Quantum group structure and local fields in the algebraic approach to 2D gravity
Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 1, pp. 158-191 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This review contains a summary of work by J. L. Gervais and the author on the operator approach to 2d gravity. Special emphasis is placed on the construction of local observables -the Liouville exponentials and the Liouville field itself - and the underlying algebra of chiral vertex operators. The double quantum group structure arising from the presence of two screening charges is discussed and the generalized algebra and field operators are derived. In the last part, we show that our construction gives rise to a natural definition of a quantum tau function, which is a noncommutative version of the classical group-theoretic representation of the Liouville fields by Leznov and Saveliev.
@article{TMF_1995_104_1_a11,
     author = {J. Schnittger},
     title = {Quantum group structure and local fields in the algebraic approach to {2D} gravity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {158--191},
     year = {1995},
     volume = {104},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a11/}
}
TY  - JOUR
AU  - J. Schnittger
TI  - Quantum group structure and local fields in the algebraic approach to 2D gravity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 158
EP  - 191
VL  - 104
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a11/
LA  - en
ID  - TMF_1995_104_1_a11
ER  - 
%0 Journal Article
%A J. Schnittger
%T Quantum group structure and local fields in the algebraic approach to 2D gravity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 158-191
%V 104
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a11/
%G en
%F TMF_1995_104_1_a11
J. Schnittger. Quantum group structure and local fields in the algebraic approach to 2D gravity. Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 1, pp. 158-191. http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a11/

[1] O. Babelon, Phys. Lett, B215 (1988), 523 | DOI | MR

[2] J.-L. Gervais, Comm. Math. Phys., 130 (1990), 257 | DOI | MR | Zbl

[3] J.-L. Gervais, Phys. Lett., B243 (1990), 85 | DOI | MR

[4] E. Cremmer, J.-L. Gervais, Comm. Math. Phys., 144 (1992), 279 | DOI | MR | Zbl

[5] J.-L. Gervais, Int. J. Mod. Phys., 6 (1991), 2805 | DOI | MR

[6] J.-L. Gervais, Comm. Math. Phys., 138 (1991), 301 | DOI | MR | Zbl

[7] J.-L. Gervais, ““Quantum group derivation of 2D gravity-matter coupling” Invited talk at the Stony Brook meeting String and Symmetry 1991”, Nucl. Phys., B391 (1993), 287 | DOI | MR | Zbl

[8] E. Cremmer, J.-L. Gervais, J.-F. Roussel, Nucl. Phys., B413 (1994), 244 | DOI | MR

[9] E. Cremmer, J.-L. Gervais, J.-F. Roussel, Comm. Math. Phys., 161 (1994), 597 | DOI | MR | Zbl

[10] O. Babelon, Comm. Math. Phys., 139 (1991), 619 | DOI | MR | Zbl

[11] J.-L. Gervais, A. Neveu, Nucl. Phys., B238 (1984), 125 ; ibid., 396 | DOI | MR | MR

[12] J.-L. Gervais, J. Schnittger, Phys. Lett., B315 (1993), 258 | DOI | MR

[13] A.A. Belavin, A.M. Polyakov, A.B. Zamolodchikov, Nucl. Phys., B241 (1984), 332 | MR

[14] Vl. Dotsenko, V. Fateev, Nucl Phys., B251 (1985), 691 | DOI | MR

[15] G. Moore, N. Seiberg, Comm. Math. Phys., 123 (1989), 77 | DOI | MR

[16] J.-L. Gervais, Y. Matsuo, Phys. Lett, B274 (1992), 309 ; Comm. Math. Phys., 152 (1993), 317 | DOI | MR | DOI | MR | Zbl

[17] J.-L. Gorvais, J.-F. Roussel, Nucl Phys., B426 (1994), 140 | DOI

[18] A. Anderson, B.E.W. Niisson, C.N. Pope and K.S. Stelle, Nucl. Phys., B430 (1994), 107 | DOI

[19] J.-L. Gervais, A. Neveu, Nucl. Phys., B224 (1983), 329 | DOI | MR

[20] J.-L. Gervais, A. Neveu, Nucl. Phys., B209 (1982), 125 | DOI | MR

[21] D. Lüst, J. Schnittger, Int. J. Mod. Phys., A6 (1991), 3625 ; J. Schnittger, Ph.D. thesis, Munich, 1990 | DOI | MR

[22] L. Johannson, A. Kihlberg, R. Marnelius, Phys. Rev., D29 (1984), 2798 ; L. Johannson, R. Marnelius, Nucl Phys., B254 (1985), 201 | DOI

[23] see, e. g. M. Jimbo, T. Miwa, Publications of the R.I.M.S., 19:3 (1983) | MR | Zbl

[24] V. Kac, M. Wakimoto, Proc. Symp. Pure Math., 49 (1989), 191 | DOI | MR | Zbl

[25] J.-L. Gervais, J. Schnittger, Nucl. Phys., B413 (1994), 277

[26] J.-L. Gervais, J. Schnittger, Nucl. Phys., B431 (1994), 273 | DOI | MR | Zbl

[27] H.J. Otto, G. Weigt, Phys. Lett., B159 (1985), 341 ; Z. Phys., C31 (1986), 219 ; G. Weigt, Critical exponents of conformal fields coupled to two-dimensional quantum gravity in the conformal gauge, talk given at 1989 Karpacz Winter School of Theor. Physics preprint PHE-90-15 ; G. Weigt, Canonical quantization of the Liouville theory, quantum group structures, and correlation functions, talk given at 1992 Johns Hopkins Workshop on Current Problems in Particle Theory, Goteborg, Sweden, print-92-0383 (DESY-IFH) hep-th/9208075 | DOI | MR | MR | Zbl

[28] E. Braaten, T. Curtright, C. Thorn, Phys. Lett., B118 (1982), 115 ; Phys. Rev. Lett., 48 (1982), 1309 ; Ann. Phys. (N.Y.), 147 (1983), 365 ; E. Braaten, T. Curtright, G. Ghandour, C. Thorn, Phys. Rev. Lett., 51 (1983), 19 ; Ann. Phys. (N.Y.), 153 (1984), 147 | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl

[29] G. Jorjadze, A. Pogrebkov, M. Polivanov, Teor. Mat Fiz., 40 (1979), 221 ; A. Pogrebkov, Teor. Mat. Fiz., 45 (1980), 161 ; G. Jorjadze, A. Pogrebkov, M. Polivanov, S. Talalov, J. Phys. A: Math. Gen., 19 (1986), 121 | MR | DOI | MR | Zbl | MR | Zbl

[30] J. Balog, L. Palla, Phys. Lett., B274 (1992), 232 | MR

[31] J. Schnittger, proceedings of the 1993 NATO adv. research workshop on new developments in string theory, conformal models and field theory, Cargese May 93, Plenum Press (to appear) | Zbl

[32] Vl. Dotsenko, V. Fateev, Nucl. Phys., B251 (1985), 691 | DOI | MR

[33] G. Felder, Nucl. Phys., B317 (1989), 215 | DOI | MR

[34] A.N. Leznov, M.V. Saveliev, Phys. Lett., B79 (1978), 294 ; Lett. Math. Phys., 3 (1979), 207 ; Comm. Math. Phys., 74 (1980), 111 ; Lett. Math. Phys., 6 (1982), 505 ; Comm. Math. Phys., 89 (1983), 59 ; “Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems”, Progress in Physics, 15, Birkhauser-Verlag, 1992 | DOI | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | MR

[35] A.N. Leznov, M.V. Saveliev, Acta Applicandae Mathematicae, 16 (1989), 1 | DOI | MR | Zbl

[36] K. Kajiwara, J. Satsuma, J. Phys. Soc. Jpn., 60 (1991), 3986 ; K. Kajiwara, Y. Ohta, J. Satsuma, q-Discrete Toda Molecule Equation, solv-int/9304001 | DOI | MR

[37] F. Smirnov, What are we quantizing in integrable field theory, hep-th/9307097

[38] A. Gerasimov, S. Khoroshkin and D. Lebedev, “q-deformations of $r$ functions: a toy model”, talk presented at the P. Cartier seminar at Ecole Normale Superieure, Paris, 1993

[39] A. Gerasimov, S. Khoroshkin, D. Lebedev, A. Mironov, A. Morozov, ITEP-M-2-94, hep-th/9405011

[40] . S. Kharchev and A. Mironov, $r$ function of two-dimensional Toda lattice and quantum deformations of integrable hierarchies, FIAN-TD-02-93

[41] A. Mironov, A. Morozov, L. Vinet, FIAN-TD-22-93, hep-th/9312213