@article{TMF_1995_104_1_a11,
author = {J. Schnittger},
title = {Quantum group structure and local fields in the algebraic approach to {2D} gravity},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {158--191},
year = {1995},
volume = {104},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a11/}
}
J. Schnittger. Quantum group structure and local fields in the algebraic approach to 2D gravity. Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 1, pp. 158-191. http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a11/
[1] O. Babelon, Phys. Lett, B215 (1988), 523 | DOI | MR
[2] J.-L. Gervais, Comm. Math. Phys., 130 (1990), 257 | DOI | MR | Zbl
[3] J.-L. Gervais, Phys. Lett., B243 (1990), 85 | DOI | MR
[4] E. Cremmer, J.-L. Gervais, Comm. Math. Phys., 144 (1992), 279 | DOI | MR | Zbl
[5] J.-L. Gervais, Int. J. Mod. Phys., 6 (1991), 2805 | DOI | MR
[6] J.-L. Gervais, Comm. Math. Phys., 138 (1991), 301 | DOI | MR | Zbl
[7] J.-L. Gervais, ““Quantum group derivation of 2D gravity-matter coupling” Invited talk at the Stony Brook meeting String and Symmetry 1991”, Nucl. Phys., B391 (1993), 287 | DOI | MR | Zbl
[8] E. Cremmer, J.-L. Gervais, J.-F. Roussel, Nucl. Phys., B413 (1994), 244 | DOI | MR
[9] E. Cremmer, J.-L. Gervais, J.-F. Roussel, Comm. Math. Phys., 161 (1994), 597 | DOI | MR | Zbl
[10] O. Babelon, Comm. Math. Phys., 139 (1991), 619 | DOI | MR | Zbl
[11] J.-L. Gervais, A. Neveu, Nucl. Phys., B238 (1984), 125 ; ibid., 396 | DOI | MR | MR
[12] J.-L. Gervais, J. Schnittger, Phys. Lett., B315 (1993), 258 | DOI | MR
[13] A.A. Belavin, A.M. Polyakov, A.B. Zamolodchikov, Nucl. Phys., B241 (1984), 332 | MR
[14] Vl. Dotsenko, V. Fateev, Nucl Phys., B251 (1985), 691 | DOI | MR
[15] G. Moore, N. Seiberg, Comm. Math. Phys., 123 (1989), 77 | DOI | MR
[16] J.-L. Gervais, Y. Matsuo, Phys. Lett, B274 (1992), 309 ; Comm. Math. Phys., 152 (1993), 317 | DOI | MR | DOI | MR | Zbl
[17] J.-L. Gorvais, J.-F. Roussel, Nucl Phys., B426 (1994), 140 | DOI
[18] A. Anderson, B.E.W. Niisson, C.N. Pope and K.S. Stelle, Nucl. Phys., B430 (1994), 107 | DOI
[19] J.-L. Gervais, A. Neveu, Nucl. Phys., B224 (1983), 329 | DOI | MR
[20] J.-L. Gervais, A. Neveu, Nucl. Phys., B209 (1982), 125 | DOI | MR
[21] D. Lüst, J. Schnittger, Int. J. Mod. Phys., A6 (1991), 3625 ; J. Schnittger, Ph.D. thesis, Munich, 1990 | DOI | MR
[22] L. Johannson, A. Kihlberg, R. Marnelius, Phys. Rev., D29 (1984), 2798 ; L. Johannson, R. Marnelius, Nucl Phys., B254 (1985), 201 | DOI
[23] see, e. g. M. Jimbo, T. Miwa, Publications of the R.I.M.S., 19:3 (1983) | MR | Zbl
[24] V. Kac, M. Wakimoto, Proc. Symp. Pure Math., 49 (1989), 191 | DOI | MR | Zbl
[25] J.-L. Gervais, J. Schnittger, Nucl. Phys., B413 (1994), 277
[26] J.-L. Gervais, J. Schnittger, Nucl. Phys., B431 (1994), 273 | DOI | MR | Zbl
[27] H.J. Otto, G. Weigt, Phys. Lett., B159 (1985), 341 ; Z. Phys., C31 (1986), 219 ; G. Weigt, Critical exponents of conformal fields coupled to two-dimensional quantum gravity in the conformal gauge, talk given at 1989 Karpacz Winter School of Theor. Physics preprint PHE-90-15 ; G. Weigt, Canonical quantization of the Liouville theory, quantum group structures, and correlation functions, talk given at 1992 Johns Hopkins Workshop on Current Problems in Particle Theory, Goteborg, Sweden, print-92-0383 (DESY-IFH) hep-th/9208075 | DOI | MR | MR | Zbl
[28] E. Braaten, T. Curtright, C. Thorn, Phys. Lett., B118 (1982), 115 ; Phys. Rev. Lett., 48 (1982), 1309 ; Ann. Phys. (N.Y.), 147 (1983), 365 ; E. Braaten, T. Curtright, G. Ghandour, C. Thorn, Phys. Rev. Lett., 51 (1983), 19 ; Ann. Phys. (N.Y.), 153 (1984), 147 | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl
[29] G. Jorjadze, A. Pogrebkov, M. Polivanov, Teor. Mat Fiz., 40 (1979), 221 ; A. Pogrebkov, Teor. Mat. Fiz., 45 (1980), 161 ; G. Jorjadze, A. Pogrebkov, M. Polivanov, S. Talalov, J. Phys. A: Math. Gen., 19 (1986), 121 | MR | DOI | MR | Zbl | MR | Zbl
[30] J. Balog, L. Palla, Phys. Lett., B274 (1992), 232 | MR
[31] J. Schnittger, proceedings of the 1993 NATO adv. research workshop on new developments in string theory, conformal models and field theory, Cargese May 93, Plenum Press (to appear) | Zbl
[32] Vl. Dotsenko, V. Fateev, Nucl. Phys., B251 (1985), 691 | DOI | MR
[33] G. Felder, Nucl. Phys., B317 (1989), 215 | DOI | MR
[34] A.N. Leznov, M.V. Saveliev, Phys. Lett., B79 (1978), 294 ; Lett. Math. Phys., 3 (1979), 207 ; Comm. Math. Phys., 74 (1980), 111 ; Lett. Math. Phys., 6 (1982), 505 ; Comm. Math. Phys., 89 (1983), 59 ; “Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems”, Progress in Physics, 15, Birkhauser-Verlag, 1992 | DOI | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | MR
[35] A.N. Leznov, M.V. Saveliev, Acta Applicandae Mathematicae, 16 (1989), 1 | DOI | MR | Zbl
[36] K. Kajiwara, J. Satsuma, J. Phys. Soc. Jpn., 60 (1991), 3986 ; K. Kajiwara, Y. Ohta, J. Satsuma, q-Discrete Toda Molecule Equation, solv-int/9304001 | DOI | MR
[37] F. Smirnov, What are we quantizing in integrable field theory, hep-th/9307097
[38] A. Gerasimov, S. Khoroshkin and D. Lebedev, “q-deformations of $r$ functions: a toy model”, talk presented at the P. Cartier seminar at Ecole Normale Superieure, Paris, 1993
[39] A. Gerasimov, S. Khoroshkin, D. Lebedev, A. Mironov, A. Morozov, ITEP-M-2-94, hep-th/9405011
[40] . S. Kharchev and A. Mironov, $r$ function of two-dimensional Toda lattice and quantum deformations of integrable hierarchies, FIAN-TD-02-93
[41] A. Mironov, A. Morozov, L. Vinet, FIAN-TD-22-93, hep-th/9312213