Intertwining operators and Hirota bilinear equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 1, pp. 144-157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give an interpretation of Hirota relations for $\tau$-functions of hierarchies of integrable equations in terms of intertwining operators. This gives possibility to generalize the relations to the case of finite-dimensional Lie algebras and quantized universal enveloping algebras. An example of $U_q(sl_2)$ is presented.
@article{TMF_1995_104_1_a10,
     author = {S. M. Kharchev and S. M. Khoroshkin and D. R. Lebedev},
     title = {Intertwining operators and {Hirota} bilinear equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {144--157},
     year = {1995},
     volume = {104},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a10/}
}
TY  - JOUR
AU  - S. M. Kharchev
AU  - S. M. Khoroshkin
AU  - D. R. Lebedev
TI  - Intertwining operators and Hirota bilinear equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 144
EP  - 157
VL  - 104
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a10/
LA  - en
ID  - TMF_1995_104_1_a10
ER  - 
%0 Journal Article
%A S. M. Kharchev
%A S. M. Khoroshkin
%A D. R. Lebedev
%T Intertwining operators and Hirota bilinear equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 144-157
%V 104
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a10/
%G en
%F TMF_1995_104_1_a10
S. M. Kharchev; S. M. Khoroshkin; D. R. Lebedev. Intertwining operators and Hirota bilinear equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 1, pp. 144-157. http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a10/

[1] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations,”, Nonlinear integrable systems — classical theory and quantum theory, World Scientific, 1983 | MR

[2] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, A. Nakayashiki, “Diagonalization of the $XXZ$ Hamiltonian by Vertex Operators”, Comm. Math. Phys., 151 (1993), 89–153 | DOI | MR

[3] V.G. Drinfeld, “Quantum groups”, Proc. ICM-86, 1, Amer. Math. Soc., Berkely USA, 1987, 798–820 | MR

[4] L.D. Faddeev, “Quantum completely integrable models in field theory”, Sov. Sci. Rev. Math. Phys., C1 (1980), 107–155 | MR | Zbl

[5] L.D. Faddeev, N.Yu. Reshetikhin, L.A. Takhtajan, “Quantization of Lie groups and Lie algebras”, Algeebra and Analisys, 1 (1989), 178–201 | MR

[6] L.B. Frenkel, N.Yu. Reshetikhin, “Quantum Affine Algebras and Holonomic Difference equations”, Commun. Math. Phys., 146 (1992), 1–60 | DOI | MR | Zbl

[7] Galindo Fronsdal, The Universal $T$-matrix, preprint UCLA/93/TEP/2, 1993 | MR

[8] A. Gerasimov, S. Khoroshkin, D. Lebedev, A. Mironov, A. Morozov,, Generalized Hirota Equations and Representation Theory, ITEP M-2/94, , 1994 hep-th/9405011

[9] M. Jimbo, T. Miwa, Algebraic Analisys of Solvable Lattice Models

[10] V. Kac, Infinite-dimensional Lie algebras, Cambridge Univ. Press, 1985 | MR | Zbl

[11] A.N Kirillov, N.Yu. Reshetikhin, “$q$-Weyl group and a multiplicative formulafor universal $R$-matrices”, Comm. Math. Phys., 134 (1990), 421–431 | DOI | MR | Zbl

[12] S.M. Khoroshkin, V.N. Tolstoy, “Universal $R$-matrix for quantized (super)algebras”, Commun. Math. Phys., 141 (1991), 599–617 | DOI | MR | Zbl

[13] V.G. Kac, M. Wakimoto, “Exceptional hierarchies of SoHtoon equations”, Proc. Symposia in Pure Math., 40 (1989), 191–237 | DOI | MR

[14] S.Z. Levendorskii, Ya.S. Soibelman, “Some application of quantum Weyl groups. The multiplicative formula for universal $R$-matrix for simple Lie algebras”, J. Geom. and Phys., 7:4 (1990), 1–14 | DOI | MR

[15] A. Morozov, L. Vinet, Free-Field Representation of Group Element for Simple Quantum Group, ITEP-M3/94 and CRM-2202 preprints, 1994 | MR

[16] S. Steinberg,, Lectures on Chevalley Groups, Yale Univ. Press, 1967 | MR

[17] K. Ueno, K. Takasaki, “Toda lattice hierarchy”, Adv. Studies in Pure Math., 1984 | MR

[18] A.B. Zamolodchikov, Al.B. Zamolodchikov, “Factorized $S$-matrix in two dimensions as the exact solutions of certain relativistic quantum field theory models”, Ann. Phys., 120 (1979), 253–291 | DOI | MR