Quantum transfer matrices for discrete and continuous quasi-exactly solvable problems
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 1, pp. 8-24
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We clarify the algebraic structure of continuous and discrete quasi-exactly solvable spectral problems by embedding them into the framework of the quantum inverse scattering method. The quasi-exactly solvable hamiltonians in one dimension are identified with traces of quantum monodromy matrices for specific integrable systems with non-periodic boundary conditions. Applications to the Azbel–Hofstadter problem are outlined.
			
            
            
            
          
        
      @article{TMF_1995_104_1_a1,
     author = {A. V. Zabrodin},
     title = {Quantum transfer matrices for discrete and continuous quasi-exactly solvable problems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {8--24},
     publisher = {mathdoc},
     volume = {104},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a1/}
}
                      
                      
                    TY - JOUR AU - A. V. Zabrodin TI - Quantum transfer matrices for discrete and continuous quasi-exactly solvable problems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1995 SP - 8 EP - 24 VL - 104 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a1/ LA - en ID - TMF_1995_104_1_a1 ER -
A. V. Zabrodin. Quantum transfer matrices for discrete and continuous quasi-exactly solvable problems. Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 1, pp. 8-24. http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a1/
