Quantization of Poisson pencils and generalized Lie algebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 3, pp. 476-488 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe two types of Poisson pencils generated by a linear bracket and a quadratic one arising from a classical R-matrix. A quantization scheme is discussed for each. The quantum algebras are represented as the enveloping algebras of “generalized Lie algebras”.
@article{TMF_1995_103_3_a9,
     author = {D. I. Gurevich and V. N. Rubtsov},
     title = {Quantization of {Poisson} pencils and generalized {Lie} algebras},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {476--488},
     year = {1995},
     volume = {103},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a9/}
}
TY  - JOUR
AU  - D. I. Gurevich
AU  - V. N. Rubtsov
TI  - Quantization of Poisson pencils and generalized Lie algebras
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 476
EP  - 488
VL  - 103
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a9/
LA  - ru
ID  - TMF_1995_103_3_a9
ER  - 
%0 Journal Article
%A D. I. Gurevich
%A V. N. Rubtsov
%T Quantization of Poisson pencils and generalized Lie algebras
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 476-488
%V 103
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a9/
%G ru
%F TMF_1995_103_3_a9
D. I. Gurevich; V. N. Rubtsov. Quantization of Poisson pencils and generalized Lie algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 3, pp. 476-488. http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a9/

[1] D. Gurevich, V. Rubtsov, N. Zobin, “Quantization of Poisson pairs: $R$-matrix approach”, JGP, 9 (1992), 25–44 | DOI | MR | Zbl

[2] J. Donin, D. Gurevich, “Braiding of the Lie algebra $sl(2)$”, Amer. Math. Soc. Transl. Ser. 2, 167, Amer. Math. Soc., Providence, RI, 1995 | MR | Zbl

[3] J. Donin, S. Shnider, Quantum symmetric spaces, hep-th/9412031 | MR

[4] G. Lancaster, J. Towber, “Representation-Functor and Flag-algebras for the Classical Groups 1”, Journal of Algebra, 59 (1979), 16–38 | DOI | MR | Zbl

[5] B. Drabant, O. Ogievetsky, M. Schlieker, Cohomology of quantum enveloping algebras, Preprint MPI-Ph/93-57, LMU-TPW1993-19

[6] S.L. Woronowicz, “Differential calculus on compact matrix pseudogroups (quantum groups)”, CMP, 122 (1989), 125–170 | MR | Zbl

[7] Sh. Majid, “Quantfum and braided Lie algebras”, Journ. Geom. Phys., 13 (1994), 307–356 | DOI | MR | Zbl

[8] D. Gurevich, “Hecke symmetries and quantum determinants”, Soviet Math. Dokl., 38:3 (1989), 555–559 | MR | Zbl

[9] D. Gurevich, “Algebraic aspects of the quantum Yang–Baxter equation”, Leningrad Math. J., 2 (1991), 801–828 | MR | Zbl

[10] J. Donin, D. Gurevich, Sh. Majid, “$R$-matrix brackets and their quantisation”, Ann. de l'institut d'Henri Poincaré, 58 (1993), 235–246 | MR | Zbl

[11] D. Gurevich, D. Panyushev, “On Poisson pairs associated to modified $R$-matrices”, Duke Math. J., 73 (1994), 249–255 | DOI | MR | Zbl

[12] M. Semenov-Tian-Shansky, “What is classical $r$-matrix?”, Funct. Anal. Appl., 17 (1983), 259–272 | DOI | MR

[13] V. Drinfeld, “Hamiltonian structures on Lie groups. Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations”, Soviet Math. Dokl., 27 (1983), 68–71 | MR | Zbl

[14] J. Donin, D. Gurevich, Quantum orbits of $R$-matrix type, hep-th/9411034 | MR

[15] J. Donin, S. Shmder, “Quasi-associativity and flatness criteria for quadratic algebra deformation”, Israel Math. J., 97 (1997), 125–149 | DOI | MR | Zbl

[16] A. Polishchuk, L. Positcelski, Quadratic algebras, 1994 | MR

[17] A. Braverman, D. Gaitsgory, Poincare-Birkhoff-Witt theorem for quadratic algbras of Koszul type, hep-th/9411113 | MR

[18] D. Gurevich, “Hecke symmetries and braided Lie algebras”, Spinors, Twistors, Clifford Algebras and Quantum Deformation, Kluwer Academic Publishers, 1993, 317–326 | DOI | MR | Zbl

[19] R. Bezrukavnikov, Koszul property of algebra of functions on the minimal orbit, Brandeis University

[20] D. Gurevich, “Generalized translation operators on Lie groups”, Soviet J. Contemporary Math. Anal., 18 (1983), 57–70 | MR | Zbl

[21] N. Reshetikhin, L. Takhtadzhyan, L. Faddev, “Quantization of Lie groups and Lie algebras”, Leningrad Math. J., 1 (1990), 193–225 | MR | Zbl