@article{TMF_1995_103_3_a9,
author = {D. I. Gurevich and V. N. Rubtsov},
title = {Quantization of {Poisson} pencils and generalized {Lie} algebras},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {476--488},
year = {1995},
volume = {103},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a9/}
}
D. I. Gurevich; V. N. Rubtsov. Quantization of Poisson pencils and generalized Lie algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 3, pp. 476-488. http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a9/
[1] D. Gurevich, V. Rubtsov, N. Zobin, “Quantization of Poisson pairs: $R$-matrix approach”, JGP, 9 (1992), 25–44 | DOI | MR | Zbl
[2] J. Donin, D. Gurevich, “Braiding of the Lie algebra $sl(2)$”, Amer. Math. Soc. Transl. Ser. 2, 167, Amer. Math. Soc., Providence, RI, 1995 | MR | Zbl
[3] J. Donin, S. Shnider, Quantum symmetric spaces, hep-th/9412031 | MR
[4] G. Lancaster, J. Towber, “Representation-Functor and Flag-algebras for the Classical Groups 1”, Journal of Algebra, 59 (1979), 16–38 | DOI | MR | Zbl
[5] B. Drabant, O. Ogievetsky, M. Schlieker, Cohomology of quantum enveloping algebras, Preprint MPI-Ph/93-57, LMU-TPW1993-19
[6] S.L. Woronowicz, “Differential calculus on compact matrix pseudogroups (quantum groups)”, CMP, 122 (1989), 125–170 | MR | Zbl
[7] Sh. Majid, “Quantfum and braided Lie algebras”, Journ. Geom. Phys., 13 (1994), 307–356 | DOI | MR | Zbl
[8] D. Gurevich, “Hecke symmetries and quantum determinants”, Soviet Math. Dokl., 38:3 (1989), 555–559 | MR | Zbl
[9] D. Gurevich, “Algebraic aspects of the quantum Yang–Baxter equation”, Leningrad Math. J., 2 (1991), 801–828 | MR | Zbl
[10] J. Donin, D. Gurevich, Sh. Majid, “$R$-matrix brackets and their quantisation”, Ann. de l'institut d'Henri Poincaré, 58 (1993), 235–246 | MR | Zbl
[11] D. Gurevich, D. Panyushev, “On Poisson pairs associated to modified $R$-matrices”, Duke Math. J., 73 (1994), 249–255 | DOI | MR | Zbl
[12] M. Semenov-Tian-Shansky, “What is classical $r$-matrix?”, Funct. Anal. Appl., 17 (1983), 259–272 | DOI | MR
[13] V. Drinfeld, “Hamiltonian structures on Lie groups. Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations”, Soviet Math. Dokl., 27 (1983), 68–71 | MR | Zbl
[14] J. Donin, D. Gurevich, Quantum orbits of $R$-matrix type, hep-th/9411034 | MR
[15] J. Donin, S. Shmder, “Quasi-associativity and flatness criteria for quadratic algebra deformation”, Israel Math. J., 97 (1997), 125–149 | DOI | MR | Zbl
[16] A. Polishchuk, L. Positcelski, Quadratic algebras, 1994 | MR
[17] A. Braverman, D. Gaitsgory, Poincare-Birkhoff-Witt theorem for quadratic algbras of Koszul type, hep-th/9411113 | MR
[18] D. Gurevich, “Hecke symmetries and braided Lie algebras”, Spinors, Twistors, Clifford Algebras and Quantum Deformation, Kluwer Academic Publishers, 1993, 317–326 | DOI | MR | Zbl
[19] R. Bezrukavnikov, Koszul property of algebra of functions on the minimal orbit, Brandeis University
[20] D. Gurevich, “Generalized translation operators on Lie groups”, Soviet J. Contemporary Math. Anal., 18 (1983), 57–70 | MR | Zbl
[21] N. Reshetikhin, L. Takhtadzhyan, L. Faddev, “Quantization of Lie groups and Lie algebras”, Leningrad Math. J., 1 (1990), 193–225 | MR | Zbl