The dressing techniques for intermediate hierarchies
Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 3, pp. 422-436 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a generalized AKNS systems introduced and discussed recently in [dGHM]. We have shown that the dressing techniques both in matrix pseudo-differential operators and formal series with respect to the spectral parameter can be developed for these hierarchies.
@article{TMF_1995_103_3_a5,
     author = {P. I. Holod and S. Z. Pakulyak},
     title = {The dressing techniques for intermediate hierarchies},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {422--436},
     year = {1995},
     volume = {103},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a5/}
}
TY  - JOUR
AU  - P. I. Holod
AU  - S. Z. Pakulyak
TI  - The dressing techniques for intermediate hierarchies
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 422
EP  - 436
VL  - 103
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a5/
LA  - ru
ID  - TMF_1995_103_3_a5
ER  - 
%0 Journal Article
%A P. I. Holod
%A S. Z. Pakulyak
%T The dressing techniques for intermediate hierarchies
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 422-436
%V 103
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a5/
%G ru
%F TMF_1995_103_3_a5
P. I. Holod; S. Z. Pakulyak. The dressing techniques for intermediate hierarchies. Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 3, pp. 422-436. http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a5/

[1] M.F. de Groot, T.J. Hollowood and J.L. Miramontes, Comm. Math. Phys., 145 (1992), 57–84 ; N.J. Burrough, M.F. de Groot, T.J. Hollowood and J.L. Miramontes, Comm. Math. Phys., 153 (1993), 187–215 | DOI | MR | Zbl | DOI | MR | Zbl

[2] V.G. Kac and D.H. Peterson, “112 Construction of the Loop Group of $E_s$”, Proceedings of Symposium on Anomalies, Geometry and Topology, World Scientific, Singapore, 1985, 276–298 | MR

[3] V.G. Drinfeld and V.V. Sokolov, Jour. Sov. Math., 30 (1984), 1975–2036 | DOI

[4] A. Digasperis, D. Lebedev, M. Olshanetsky, S. Pakuliak, A. Perelomov and P. Santini, Comm. Math. Phys., 141 (1991), 133–151 ; J. Math. Phys., 33:11 (1992), 3783–3793 | DOI | MR | DOI | MR

[5] F. Delduc and L. Feher, Conjugacy classes in the Weyl group admitting a regular Eigenvector and integrable hierarchies, Preprint ENSLAPP-L-493/94 | MR

[6] F. ten Kroode and J. van de Leur, Comm. Math. Phys., 137 (1991), 67–107 | DOI | MR | Zbl

[7] L. Feher, J. Harnad and I. Marshal, Comm. Math. Phys., 154 (1993), 181–214 | DOI | MR | Zbl

[8] M.A. Semenov-Tian-Shansky, “Dressing transformation and Poisson Lie group action”, Publ. RIMS Kyoto Univ., 21 (1985), 1237 | DOI | MR

[9] D. Lebedev, S. Pakuliak, Comments on the Drinfeld-Sokolov Hamiltonian Reduction. 1. $\hat{gl}(n)$ Case, Preprint, GEF-Th-9/1990, Genova Univ.

[10] I.M. Gelfand, L.A. Dickey, Preprint Inst. Appl. Math., 1978, 136 pp. (in Russian)

[11] I.M. Gelfand, L.A. Dickey, Funct. Anal. Appl., 11:2 (1977), 93–105 | DOI | Zbl

[12] Yu.I. Manin, Jour. Sov. Math., 11 (1979), 1–122 | DOI | Zbl

[13] G. Wilson, Math. Proc. Cambr. Philos. Soc., 86 (1979), 131–143 ; Q.J. Math. Oxford, 32 (1981), 491–512 | DOI | MR | Zbl | DOI | MR | Zbl

[14] D. Lebedev, S. Pakuliak, Phys. Lett., A160 (1991), 173–178 | DOI | MR

[15] A. Newell, Solitons in Mathematics and Physics, CBMS 48, SIAM, Philadelphia, 1985 | MR

[16] V.G. Kac, J.W. van de Leur, “The $n$-component KP hierarchy and representation theory”, Important Developments in Solitin Theory, Series in Nonlinear Dynamics, eds. A.S. Fokas, V.E. Zakharov, Springer, 1993, 302–343 | DOI | MR | Zbl

[17] L.A. Dickey, Soliton Equations and Hamiltonian Systems, World Scientific, Singapure, 1991 | MR | Zbl

[18] L.A. Dickey, J. Math. Phys., 32:11 (1991), 2996–3002 | DOI | MR | Zbl

[19] M.J. Bergvelt, A.P.E. ten Kroode, J. Math. Phys., 29:6 (1988), 1308–1320 | DOI | MR

[20] C.R. Fernandez-Pousa, M.V. Gallas, J.L. Miramontes, J.S. Guillen, $\mathcal W$-Algebras from soliton equations and Heisenberg subalgebras, Preprint Univ. of Santiago, US-FT/13-94, hep-th/9409016 | MR