A duality-like transformation in WZNW models inspired from dual Riemannian globally symmetric spaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 3, pp. 413-421 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate transformations on the group manifold element and gauged fields on two different kinds of gauged WZNW models and in this way obtain a duality-like transformation between chiral and vector gauged WZNW models with null gauged subgroups, that exactly converts the chiral gauged WZNW action to vector gauged WZNW action and vice versa. These duality-like transformations correspond to the duality in Riemannian globally symmetric spaces.
@article{TMF_1995_103_3_a4,
     author = {A. M. Ghezelbash},
     title = {A duality-like transformation {in~WZNW} models inspired from dual {Riemannian} globally symmetric spaces},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {413--421},
     year = {1995},
     volume = {103},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a4/}
}
TY  - JOUR
AU  - A. M. Ghezelbash
TI  - A duality-like transformation in WZNW models inspired from dual Riemannian globally symmetric spaces
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 413
EP  - 421
VL  - 103
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a4/
LA  - ru
ID  - TMF_1995_103_3_a4
ER  - 
%0 Journal Article
%A A. M. Ghezelbash
%T A duality-like transformation in WZNW models inspired from dual Riemannian globally symmetric spaces
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 413-421
%V 103
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a4/
%G ru
%F TMF_1995_103_3_a4
A. M. Ghezelbash. A duality-like transformation in WZNW models inspired from dual Riemannian globally symmetric spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 3, pp. 413-421. http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a4/

[1] E. Witten, Phys. Rev., D44 (1991), 314 | MR | Zbl

[2] X. de la Ossa, F. Quevedo, Nucl. Phys., B403 (1993), 377 ; K. Sfetsos, hep-th/9402031, THU, 94/01 | DOI | Zbl

[3] E.B. Kiritsis, Mod. Phys. Lett., A6 (1991), 2871 ; E. Kiritsis, Nucl. Phys., B405 (1993), 109 ; A. Giveon, E. Kiritsis, Nucl. Phys., B411 (1994), 487 | DOI | MR | DOI | MR | DOI | MR

[4] E. Álvarez, L. Álvarez-Gaumé, J.L.F. Barbon and Y. Lozano, Nucl. Phys., B415 (1994), 71 ; E. Álvarez, L. Álvarez-Gaumé, and Y. Lozano, On Non-Abelian Duality, CERN-TH-7204/94 | DOI | MR | Zbl

[5] M. Alimohammadi, F. Ardalan and H. Arfaei, Gauging SL(2,R) And SL(2,R) x U(l) By Their Nilpotent Subgroups, BONN-HE-93-12, SUTDP-93/72/3, IPM-93-007, hep-th/9304024 | MR

[6] A. Kumar, S. Mahapatra, Exact Duality And Nilpotent Gauging, IP/BBSR/94-02, IMSC/94-02

[7] F. Ardalan, A.M. Ghezelbash, preprint IPM/73/94

[8] E. Witten, Commun. Math. Phys., 92 (1984), 455 | DOI | MR | Zbl

[9] K. Gawedzki, A. Kupiainen, Phys. Lett., B215 (1988), 119 | DOI | MR

[10] A.M. Polyakov, P.B. Wiegman, Phys. Lett., B141 (1984), 223 | DOI | MR

[11] K. Sfetsos, Gauging A Non-Semi-Simple WZW Model, THU-93/30, hep-th/9311010

[12] S-W. Chung, S.H.H. Tye, Phys. Rev., D47 (1993), 4546 | MR

[13] K. Sfetsos, A.A. Tseytlin, Chiral Gauged WZNW Models And Heterotic String Backgrounds, CERN-TH.6962/93, USC-93/HEP- 2, Imperial/TP/92-93/65, hep-th/9308108 | MR

[14] K. Sfetsos, Exact Action And Exact Geometry In Chiral Gauged WZNW Models, USC-93/HEP-S1, hep-th/9305074

[15] F. Ardalan, “2D Black Holes And 2D Gravity”, Low-Dimensional and Quantum Field Theory, eds. H. Osborn, Plenum Press, New York, 1993, 177 | DOI | MR | Zbl

[16] C. Klimcik, A.A. Tseytlin, Exact Four Dimensional String Solutions And Toda-like Sigma Models From Null-gauged WZNW Theories, IMPERIAL/TP/93-94/17, PRA-HEP 94/1, hep-th/9402120 | MR

[17] A. Gerasimov, A. Morozov, M. 01shanetsky, A. Marshakov and S. Shatashvili, Int. J. Mod. Phys., A5 (1990), 2495 | DOI | MR

[18] G.G. Bauerle, E.A. de Kerf, Finite And Infinite Dimensional Lie Algebras And Applications In Physics, ELSEVIER SCIENCE PUBLISHERS, North-Holland, 1990 | MR

[19] R. Gilmore, Lie Groups, Lie Algebras And Some Of Their Applications, Wiley-Interscience Publication, N. Y., 1978 | MR

[20] S. Helgason, Differential Geometry, Lie Groups And Symmetric Spaces, Academic Press, N. Y., 1978 | MR | Zbl