$q$-deformed Grassmann field and the two-dimensional Ising model
Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 3, pp. 388-412 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct an exact representation of the Ising partition function in the form of the $SL_q(2,R)$-invariant functional integral for the lattice-free $q$-fermion field theory ($q=-1$). It is shown that the $q$-fermionization allows one to rewrite the partition function of the eight-vertex model in an external field through a functional integral with four-fermion interaction. To construct these representations, we define a lattice $(l,q,s)$-deformed Grassmann bispinor field and extend the Berezin integration rules to this field. At $q=-1$, $l=s=1$ we obtain the lattice $q$-fermion field which allows us to fermionize the two-dimensional Ising model. We show that the Gaussian integral over $(q,s)$-Grassmann variables is expressed through the $(q,s)$-deformed Pfaffian which is equal to square root of the determinant of some matrix at $q=\pm 1$, $s=\pm 1$.
@article{TMF_1995_103_3_a3,
     author = {A. I. Bugrij and V. N. Shadura},
     title = {$q$-deformed {Grassmann} field and the two-dimensional {Ising} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {388--412},
     year = {1995},
     volume = {103},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a3/}
}
TY  - JOUR
AU  - A. I. Bugrij
AU  - V. N. Shadura
TI  - $q$-deformed Grassmann field and the two-dimensional Ising model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 388
EP  - 412
VL  - 103
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a3/
LA  - en
ID  - TMF_1995_103_3_a3
ER  - 
%0 Journal Article
%A A. I. Bugrij
%A V. N. Shadura
%T $q$-deformed Grassmann field and the two-dimensional Ising model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 388-412
%V 103
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a3/
%G en
%F TMF_1995_103_3_a3
A. I. Bugrij; V. N. Shadura. $q$-deformed Grassmann field and the two-dimensional Ising model. Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 3, pp. 388-412. http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a3/

[1] Belavin A.A., Polyakov A.M., Zamolodchikov A.B., “Infinite Conformal Symmetry in Two-dimensional Quantum Field Theory”, Nucl. Phys. B, B241 (1984), 333–380 | DOI | MR | Zbl

[2] Zamolodchikov A.B., Integrable Field Theory from Conformal Field Theory, Advanced Studies in Pure Mathematics, 19, Kinokyniya, Tokyo, 1989, 641 pp. | MR

[3] Reshetikhin N.Yu., Smirnov F.A., “Hidden Quantum Group Symmetry and Integrable Perturbation of Conformal Field Theories”, Commun. Math. Phys., 131 (1990), 157–180 | DOI | MR

[4] Bernard D., LeCleir A., “Quantum Group Symmetries and Non-Local Currents in 2D QFTCommun”, Math. Phys., 142 (1991), 99–138 | DOI | MR | Zbl

[5] Lukyanov S., Free Field Representation for Massive Integrable Models, preprint RU-93-30, Piscataway, Rutgers University, 1993, 48 pp. | MR

[6] Itoyama H., Thaker H.B, “Integrability and Virasoro Symmetry of the Noncritical Baxter/Ising Model”, Nucl. Phys. B, B320 (1989), 541 | DOI | MR

[7] Davis B., Foda O., Jimbo M., Miwa T., Nakayashiki A., “Diagonalization of the XXZ Hamiltonian by Vertex Operators”, Commun. Math. Phys., 151 (1993), 89–153 | DOI | MR

[8] Foda O., Miwa T, “Corner Transfer Matrices and Quantum Affine Algebras”, Int. J. Mod. Phys., A7, sup. 1A (1992), 279–302 | DOI | MR | Zbl

[9] Jimbo M., Miwa T., Ohta, “Structure of the Space of States in RSOS Models”, Int. J. Mod Phys., A8 (1993), 1457–1477 | DOI | MR

[10] Foda O., Jimbo M., Miwa T., Miki K., Nakayashiki A., Vertex Operators in Solvable Lattice Models-RIMS, preprint RIMS-922, Kyoto University, Kyoto, 1993, 42 pp. | MR

[11] Schultz T.D., Mattis D.C., Lieb E.H., “Two-dimentional Ising Model as a Soluble Problem of Many Fermions”, Rev. Mod. Phys., 36 (1964), 856–867 | DOI | MR

[12] Fradkin E.S., Steingradt D.M., “A Continuous-integral Method for Spin Lattice Models”, Nuovo Cim., 47A:1 (1978), 115–138 | DOI | MR

[13] Bugrij A.I., Partition Function of the Two-dimensional Ising Model on Finite Size Lattice. -, Preprint ITP-85-114R, Kiev, 1985, 18 pp. | Zbl

[14] Plechko V.N, Teor. Mat. Fyz., 64:1 (1985), 150–162 | MR

[15] Bugrij A.I., “Fermionization of a Generalized Two-Dimensional Ising Model”, Research Reports in Physics. Electron-Electron Correlation Effects in Low-Dimentional Conductors and Superconductors, eds. A.A. Ovchinnikov, I.I. Ukrainskii, Springer-Verlag, New York, 1992, 135–151

[16] Bugrij A.I., Shadura V.N., “The Partition Function of the $2D$ Ising Model with Magnetic Fields on the Boundaries and $c=\frac12$ Virasoro Characters”, Phys. Lett., A150:3, 4 (1990), 171–178 | DOI | MR

[17] Creutz M., Quarks, Gluons and Lattices, Cambridge University Press, Cambridge, 1983

[18] Drinfeld V.G., “Quantum Groups”, Proc. Int. Congress of Mathematics, 1, Berkeley, 1986, 798–820 | MR

[19] Manin Yu.I., Quantum Group and Non-Commutative Geometry, preprint CRM-1561, Montreal University, Montreal, 1988 | MR | Zbl

[20] Faddeev L.D., Reshetikhm N.Yu., Takhtajan L.A., “Quantization of Lie Qroups and Lie Algebras”, Algebra i Analis, 1:1 (1989), 178–206 | MR

[21] Schliker M., Scholl M., “Spinor Calculus for Quantum Groups”, Z. Phys. C - Particles and Fields, 47 (1990), 625–628 | DOI | MR

[22] Carow-Watamura U., Schliker M., Scholl M., Watamura S., “Tensor Representation of the Quantum Group $SL_q(2,C)$ and Quantum Minkowski Space”, Z. Phys. C - Particles and Fields, 48 (1990), 159–167 | DOI | MR

[23] Bugrij A.I., Rubtsov V., Shadura V.N., Covariant Differential and Integral Calculi for Lattice $(l,q)$-deformed Fields, preprint ITP-94-54E, Kiev, 1994, 25 pp. | MR

[24] Majid S.,Marcl M., Gluing Operation for $R$-matrices, Quantum Groups and Link-invariant of Hecke Type, DAMTP preprint, DAMTP/93-20, Cambridge, 1993, 36 pp. | MR

[25] Lyubashenko V., Sudbery A., Quantum Supergroups of $GL(n\m)$ type: Differential Forms, Koszul Complex and Berezinians, Heslington, University of York, 1993, 55 pp. | MR

[26] Wess J., Zumino B., “Covariant Differential Calculus on the Quantum Hyper-plane”, Nucl. rs. (Proc. Suppl.), 18B (1990), 302 | MR | Zbl

[27] Zumino B., “Deformation of the Quantum Mechanical Phase Space with Bosonic or Fermionic Coordinates”, Mod. Phys. Lett. A, A13 (1991), 1225 | DOI | MR | Zbl

[28] Woronowicz S.L., “Differential Calculus on Compact Matrix Pseudogroups”, Commun. Math. Phys., 122 (1989), 125–170 | DOI | MR | Zbl

[29] Gurevich D., Radul A., Rubtsov V., “Noncommutative Differential Geometry Connected with Yang-Baxter Equation”, Zap. Nauch. Sem. LOMI, 199, 1992, 51–70 | MR | Zbl

[30] Maltsiniotis G., “Le Langage des Espases et des Groupes Quantiques”, Commun. Math. Phys., 151 (1993), 275–302 | DOI | MR | Zbl

[31] Berezin F.A., Introduction to Algebra and Analysis with Anticommutative Variables, Moscow University Press, Moscow, 1983, 205 pp. | MR

[32] Baulieu L., Floratos E.G., “Path Integral on the Quantum Plane”, Phys. Lett. B, B258 (1991), 171 | DOI | MR

[33] Chachian M., Demichev A.P., $q$-Deformed Path Integral, preprint HU - SEFT R 1993-10, Helsinki University, Helsinki, 1993, 14 pp. | MR

[34] Mathai V., Quillen D., “Superconnections, Thorn Classes and Equivariant Differential Forms”, Topology, 25 (1986), 85–110 | DOI | MR | Zbl

[35] Green H.S., Phys. Rev., 90 (1953), 270 | DOI | MR | Zbl

[36] Volkov D.V., ZhETF, 9 (1959), 1107 | MR | Zbl

[37] Filippov A.T., Isaev A.P., Kurdikov A.B., Mod. Phys. Lett. A, A7 (1992), 2129 | DOI | MR | Zbl

[38] Filippov A.T., Isaev A.P., Kurdikov A.B., Int. J. Mod. Phys. A, A8 (1993), 4973 | DOI | MR | Zbl

[39] Baxter R.J., Exactly Solved Models in Statistical Mechanics, Academic Press, New York, 1982, 486 pp. | MR | Zbl