$q$-deformed Grassmann field and the two-dimensional Ising model
Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 3, pp. 388-412
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct an exact representation of the Ising partition function in the form of the $SL_q(2,R)$-invariant functional integral for the lattice-free $q$-fermion field theory ($q=-1$). It is shown that the $q$-fermionization allows one to rewrite the partition function of the eight-vertex model in an external field through a functional integral with four-fermion interaction. To construct these representations, we define a lattice $(l,q,s)$-deformed Grassmann bispinor field and extend the Berezin integration rules to this field. At $q=-1$, $l=s=1$ we obtain the lattice $q$-fermion field which allows us to fermionize the two-dimensional Ising model. We show that the Gaussian integral over $(q,s)$-Grassmann variables is expressed through the $(q,s)$-deformed Pfaffian which is equal to square root of the determinant of some matrix at $q=\pm 1$, $s=\pm 1$.
@article{TMF_1995_103_3_a3,
author = {A. I. Bugrij and V. N. Shadura},
title = {$q$-deformed {Grassmann} field and the two-dimensional {Ising} model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {388--412},
publisher = {mathdoc},
volume = {103},
number = {3},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a3/}
}
TY - JOUR AU - A. I. Bugrij AU - V. N. Shadura TI - $q$-deformed Grassmann field and the two-dimensional Ising model JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1995 SP - 388 EP - 412 VL - 103 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a3/ LA - en ID - TMF_1995_103_3_a3 ER -
A. I. Bugrij; V. N. Shadura. $q$-deformed Grassmann field and the two-dimensional Ising model. Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 3, pp. 388-412. http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a3/