Crossed modules, quantum braided groups and ribbon structures
Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 3, pp. 368-387 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Previous results about crossed modules over a braided Hopf algebra are applied for to study of quantum groups in braided categories. Cross products for braided Hopf algebras and quantum braided groups are built. Criteria when a braided Hopf algebra or a quantum group is a cross product are obtained. A generalization of the Majid's trunsmutation procedure for quantum braided groups is considered. A ribbon structure on a quantum braided group and its compatibility with cross product and transmutation are studied.
@article{TMF_1995_103_3_a2,
     author = {Yu. N. Bespalov},
     title = {Crossed modules, quantum braided groups and ribbon structures},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {368--387},
     year = {1995},
     volume = {103},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a2/}
}
TY  - JOUR
AU  - Yu. N. Bespalov
TI  - Crossed modules, quantum braided groups and ribbon structures
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 368
EP  - 387
VL  - 103
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a2/
LA  - ru
ID  - TMF_1995_103_3_a2
ER  - 
%0 Journal Article
%A Yu. N. Bespalov
%T Crossed modules, quantum braided groups and ribbon structures
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 368-387
%V 103
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a2/
%G ru
%F TMF_1995_103_3_a2
Yu. N. Bespalov. Crossed modules, quantum braided groups and ribbon structures. Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 3, pp. 368-387. http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a2/

[1] Bespalov Yu.N., Crossed modules and quantum groups in braided categories J, 77, ITP-94-21E, ITP-94-38E, Kiev, 1994 | MR | Zbl

[2] Drinfeld V.G., “Quantum groups”, Proceedings of the ICM, eds. A. Gleason, AMS, Rhode Island, 1987, 798–820 | MR

[3] Drinfeld V.G., “On almost-cocommutative Hopf algebras”, Algebra i Analiz, 1:2 (1989), 30–46 (in Russian) | MR

[4] Freyd P., Yetter D., “Braided compact closed categories with applications to low dimensional topology”, Adv. Math., 77 (1989), 156–182 | DOI | MR | Zbl

[5] Joyal A., Street R., Braidedmonoidal categories, Mathematics Reports 86008, Macquarie University, 1986

[6] Lyubashenko V.V., Tensor categories and RCFT I, II, 1990

[7] Lyubashenko V.V., “Tangles and Hopf algebras in braded categories”, J. Pure and Applied Algebra, 1991 | MR

[8] Mac Lane S., Categories for working mathematican, Springer Verlag, New York, 1971 | MR

[9] Majid S., “Cross products by braided group and bosonization”, J. Algebra, 1991 | MR

[10] Majid S., “Transmutation theory and rank for quantum braided groups”, Math. Proc. Camb. Phil. Soc., 1991 | MR

[11] Majid S., “Beyond supersymmetry and quantum symmetry (an introduction to braided-groups and braided-matrices)”, Proc. 5th Nankai Worcshop (Tianjin, China, June, 1992), eds. M-L. Ge, World. Sci. | MR

[12] Majid S., “Algebras and Hopf algebras in braided categories”, Advances in Hopf Algebras, Dekker, 1994 | MR | Zbl

[13] Radford D., “The structure of Hopf algebras with a projection”, J. Algebra, 92 (1985), 322–347 | DOI | MR | Zbl

[14] Reshetikhin N.Yu.,Turaev V.G., “Ribbon graphs and their invariants derived from quantum groups”, Gomm. in Math. Phys., 127:1 (1990), 1–26 | DOI | MR | Zbl

[15] Whitehead J.H.C., “Combinatorial homotopy, II”, Bull. Amer. Math. Soc., 55 (1949), 453–496 | DOI | MR | Zbl

[16] Yetter D., “Quantum groups and representations of monoidal categories”, Math. Proc. Camb. Phil. Soc., 108 (1990), 261–290 | DOI | MR | Zbl