Integrals of motion of classical lattice sine-Gordon system
Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 3, pp. 507-528
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We compute the local integrals of motions of the classical limit of the lattice sine-Gordon system, using a geometrical interpretation of the local sine-Gordon variables. Using an analogous description of the screened local variables, we show that these integrals are in involution. We present some remarks on relations with the situation at roots of 1 and results on another latticisation (linked to the principal subalgebra of $\widehat {s\ell }_{2}$ rather than the homogeneous one). Finally, we analyze a module of “screened semilocal variables”, on which the whole $\widehat {s\ell }_{2}$ acts.
@article{TMF_1995_103_3_a11,
     author = {B. Enriquez and B. L. Feigin},
     title = {Integrals of motion of classical lattice {sine-Gordon} system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {507--528},
     year = {1995},
     volume = {103},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a11/}
}
TY  - JOUR
AU  - B. Enriquez
AU  - B. L. Feigin
TI  - Integrals of motion of classical lattice sine-Gordon system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 507
EP  - 528
VL  - 103
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a11/
LA  - ru
ID  - TMF_1995_103_3_a11
ER  - 
%0 Journal Article
%A B. Enriquez
%A B. L. Feigin
%T Integrals of motion of classical lattice sine-Gordon system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 507-528
%V 103
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a11/
%G ru
%F TMF_1995_103_3_a11
B. Enriquez; B. L. Feigin. Integrals of motion of classical lattice sine-Gordon system. Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 3, pp. 507-528. http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a11/

[1] V.G. Drinfeld, V.V. Sokolov, “Lie algebras and equations of Korteveg-de Vries type”, Jour. Sov. Math., 30 (1985), 1975–2036 | DOI | MR | Zbl

[2] B. Enriquez, “Nilpotent action on the $KdV$ variables and $2$-dimensional $DS$ reduction”, Teor. Mat. Fiz., 1993 | Zbl

[3] L.D. Faddeev, A.Yu. Volkov, “Abelian current algebra and the Virasoro algebra on the lattice HV-TFT 93-29”, Phys. Lett. B, to appear | MR

[4] B.L. Feigin, Moscow lectures, 1992

[5] B.L. Feigin, E. Frenkel, Generalized $KdV$ flows and nilpotent subgroups of affine Kac-Moody groups, hep-th 9311171

[6] A. Guichardet, Cohomologie des groupes topologiques et des algebres de Lie, Cedic/Fernand Nathan | MR

[7] A.G. Izergin, V.E. Korepin, “The lattice quantum sine-Gordon model”, Lett. Math. Phys., 5 (1981), 199–205 | DOI | MR

[8] A.G. Izergin, V.E. Korepin, “Lattice versions of quantum held theory models in two dimensions”, Nucl. Phys., B205 (1982), 401–413 | DOI | MR

[9] M.A. Semenov-Tian-Shansky, “Dressing acti action transformations and Poisson-Lie group actions”, Publ. Math. RIMS, 21 (1985), 1237–1260 | DOI | MR