Scattering on univalent graphs from $L$-function viewpoint
Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 3, pp. 489-506 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The scattering process on multiloop infinite $p+1$-valent graphs is studied. These graphs are discrete spaces of a constant negative curvature being quotients of $p$-adic hyperbolic plane over free acting discrete subgroups of the projective group $PGL(2, {\mathbf Q}_p)$. They are, in fact, identical to $p$-adic multiloop surfaces. A finite subgraph containing all loops is called the reduced graph $T_{\scriptsize red}$, $L$-function is associated with this finite subgraph. For an infinite graph, we introduce the notion of spherical functions. They are eigenfunctions of a discrete Laplace operator acting on the graph. In scattering processes we define $s$-matrix and the scattering amplitudes $c_i$ imposing the restriction $c_i=A_{ret}(u)/A_{adv}(u)=\hbox {const}$ for all vertices $u\in T_{\scriptsize supp}$. $A_{ret}$ and $A_{adv}$ are retarded and advanced branches of a solution to eigenfucntion problem and $T_{\scriptsize supp}$ is a support domain for scattering centers. Taking the product over all $c_i$, we obtain the determinant of the scattering matrix which is expressed as a ratio of two $L$–functions: $C\sim L(\alpha _+)/L(\alpha _-)$. Here $L$–function is the Ihara–Selberg function depending only on the form of $T_{\scriptsize red}$, $\alpha _\pm =t/2p\pm \sqrt {t^2/4p^2-1/p}$, $t-p-1$ being the eigenvalue of the Laplacian. We present a proof of the Hashimoto–Bass theorem expressing $L$–function $L(u)$ of any finite graph via determinant of a local operator $\Delta (u)$ acting on this graph. Numerous examples of $L$-function calculations are presented.
@article{TMF_1995_103_3_a10,
     author = {L. O. Chekhov},
     title = {Scattering on univalent graphs from $L$-function viewpoint},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {489--506},
     year = {1995},
     volume = {103},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a10/}
}
TY  - JOUR
AU  - L. O. Chekhov
TI  - Scattering on univalent graphs from $L$-function viewpoint
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 489
EP  - 506
VL  - 103
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a10/
LA  - en
ID  - TMF_1995_103_3_a10
ER  - 
%0 Journal Article
%A L. O. Chekhov
%T Scattering on univalent graphs from $L$-function viewpoint
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 489-506
%V 103
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a10/
%G en
%F TMF_1995_103_3_a10
L. O. Chekhov. Scattering on univalent graphs from $L$-function viewpoint. Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 3, pp. 489-506. http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a10/

[1] L. Chekhov, “$L$-functions in scattering on $p$-adic multiloop surfaces”, J. Math. Phys., 36:1 (1995), 414–425 | DOI | MR | Zbl

[2] A. Selberg, “Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces, with applications to Dirichlet series”, J. Indian Math. Soc., 20 (1956), 47–87 ; Y. Colin De Verdière, “Spectre du laplacien et longueur des géodésiques fermées II”, Comp. Math., 27 (1973), 159–184 ; D.A. Hejhal, “The Selberg trace formula and the Riemann zeta function”, Duke Math. J., 43 (1976), 441–482 ; P. Cartier, A. Voros, “Une nouvelle interprétation de la formule des traces de Selberg”, C. R. Acad. Sci. Paris, Ser. I, 307 (1988), 143–148 | MR | Zbl | MR | Zbl | DOI | MR | Zbl | MR | Zbl

[3] Yu.I. Manin, “$p$-adic authomorphic functions”, Sovr. Probl. Mat., 3 (1974), 5–92 ; VINITI publ., Moscow (in Russian); J.P. Serre, Trees, Springer, Berlin, Heidelberg, New York, 1980 ; L. Gerritzen, M. van der Put, Schottky groups and Mumford curves, Springer, Berlin, Heidelberg, New York, 1980 | MR | Zbl | MR | Zbl | MR | Zbl

[4] L.O. Chekhov, A.D. Mironov, A.V. Zabrodin, “Multiloop calculations in $p$-adic string theory and Bruhat-Tits trees”, Commun. Math. Phys., 125 (1989), 675–711 | DOI | MR | Zbl

[5] Y. Ihara, “On discrete subgroup of the two by two projective linear group over $p$-adic field”, J. Math. Soc. Japan, 18:3 (1966) | DOI | MR | Zbl

[6] K.I. Hashimoto, “Zeta functions of finite graphs and representations of $p$-adic groups”, Adv. Studies in Pure Math., 15 (1989), 211–280 ; “On zeta and $L$-functions of finite graphs”, Int. J. Math., 1:4 (1990), 381–396 | MR | Zbl | DOI | MR | Zbl

[7] H. Bass, The Ihara-Selberg Zeta functions on a tree lattice, Columbia Univ., 1990, 109 pp.

[8] A.B. Venkov, A.M. Nikitin, “Selberg trace formula, Ramanujan graphs and some problems in mathematical physics”, Algebra i Analiz, 5:3 (1993), 1–76 (in Russian) | MR | Zbl

[9] L.L. Vaksmanand, L.I. Korogodskii, Harmonic analysis on Quantum hyperboloids, 90-27, Inst. Teor. Fiz., Kiev, 1990, 28 pp.

[10] P.G.O. Freund, “Scattering on $p$-adic and on adelic symmetric spaces”, Phys. Lett., B257 (1991), 119–125 | DOI | MR

[11] P.G.O. Freun, A. Zabrodin, “A hierarchic array of integrable models”, J. Math. Phys., 34:12 (1993), 5832–5842 | DOI | MR | Zbl

[12] R.V. Romanov, H.E. Rudin, Scattering on the Bruhat-Tits tree. II. $p$-adic authomorphic functions, St. Petersburg State University, October 1994 | MR

[13] Harish-Chandra, Am. J. Math., 80 (1958), 241–250 | DOI | MR

[14] L.D. Faddeev, B.S. Pavlov, Seminar of Steklov Math. Inst., Leningrad, 27, 1972, 161 (in Russian) | MR | Zbl

[15] S.G. Gindikin, F.I. Karpelevič, Doklady Akad. Nauk SSSR, 145 (1962), 252 (in Russian) | MR