General formulae for solutions of initial and boundary value problems for the sine-Gordon equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 3, pp. 358-367 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the sine-Gordon equation the solution of boundary value problem is formulated in terms of ordered exponents as it has been done erlier for Goursat and Cauchy problems.
@article{TMF_1995_103_3_a1,
     author = {E. D. Belokolos},
     title = {General formulae for solutions of initial and boundary value problems for the {sine-Gordon} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {358--367},
     year = {1995},
     volume = {103},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a1/}
}
TY  - JOUR
AU  - E. D. Belokolos
TI  - General formulae for solutions of initial and boundary value problems for the sine-Gordon equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 358
EP  - 367
VL  - 103
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a1/
LA  - ru
ID  - TMF_1995_103_3_a1
ER  - 
%0 Journal Article
%A E. D. Belokolos
%T General formulae for solutions of initial and boundary value problems for the sine-Gordon equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 358-367
%V 103
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a1/
%G ru
%F TMF_1995_103_3_a1
E. D. Belokolos. General formulae for solutions of initial and boundary value problems for the sine-Gordon equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 3, pp. 358-367. http://geodesic.mathdoc.fr/item/TMF_1995_103_3_a1/

[1] Bobenko A.I., “Eigenfunctions of the boundary value problems on rectangle for the elliptic sine-Gordon equation”, Zap. Nauchn. Sem. LOMI, 179, 1989, 32–36 | MR

[2] Bikbaev R.F., Tarasov V.D., “A nonhomogenous boundary value problem an a semiaxis and on an interval for the sine-Gordon equation”, Algebra i Analiz, 3:4 (1991), 775–789 | MR | Zbl

[3] Costabile G., Parmantier R.D., Savo B., McLaughlin D.W., Scott A.C., “Exact solutions of the sine-Gordon equation describing oscillations in a long (but finite) Josephson junction”, Appl. Phys. Lett., 32 (1978), 587–589 | DOI

[4] Fokas A.S., Its A.R., “An initial boundary value problem for the sine-Gordon equation in laboratory coordinates”, Teor. Mat. Fiz., 92:3, 387–403 | MR | Zbl

[5] Fokas A.S., Its A.R., “Soliton generation for initial-boundary-value problems”, Phys. Rev. Lett., 68:21 (1992), 3117–3120 | DOI | MR | Zbl

[6] Kac V.G., “Infinite dimensional Lie algebras. An introduction”, Progr. in Math., 44, eds. J. Coates, S. Helganson, Birkäuser, Basel, 1983, 245 | MR | Zbl

[7] Khabibullin I.T., “Backlund transformation and initial-boundary value problems”, Mat. Zap., 49:4 (1991), 130–138 (in Russian) | MR

[8] Kozel V.A., Kotliarov V.R., “Almost periodic solution of the equation $u_tt-u_xx+\sin u=0$”, Dokl. AN UkrSSR, ser. A, 1976, no. 10, 878–881 | MR | Zbl

[9] Leznov A.,N., Saveliev M.V., Methods of a group theory for integration of nonlinear dynamic systems, Nauka, Moscow, 1985 (in Russian) | MR | Zbl

[10] Mansfield P., “Solution of the initial value problem for the sine-Gordon equation using a Kac-Moody algebra”, Commun. Math. Phys., 98 (1985), 525–537 | DOI | MR | Zbl

[11] Sklyanin E.K., “Boundary conditions for integrable systems”, Funk. Anal. Priloj., 21:2 (1987), 86–87 (in Russian) | MR | Zbl