Stratified flow in electric field, Schrödinger equation and operator extension theory model
Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 2, pp. 246-255
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The flow of inviscid incompressible stratified dielectric fluid in gravitational and electric field is considered. The problem is reduced to the linear equation analogous to the Schrödinger one. The existence of eddies caused by the electric field is shown. The model based on the operator extension theory for the discription of stratified flows near small obstacle and an obstacle with small aperture is constructed.
@article{TMF_1995_103_2_a4,
     author = {I. Yu. Popov},
     title = {Stratified flow in electric field, {Schr\"odinger} equation and operator extension theory model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {246--255},
     year = {1995},
     volume = {103},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_103_2_a4/}
}
TY  - JOUR
AU  - I. Yu. Popov
TI  - Stratified flow in electric field, Schrödinger equation and operator extension theory model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 246
EP  - 255
VL  - 103
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_103_2_a4/
LA  - ru
ID  - TMF_1995_103_2_a4
ER  - 
%0 Journal Article
%A I. Yu. Popov
%T Stratified flow in electric field, Schrödinger equation and operator extension theory model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 246-255
%V 103
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1995_103_2_a4/
%G ru
%F TMF_1995_103_2_a4
I. Yu. Popov. Stratified flow in electric field, Schrödinger equation and operator extension theory model. Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 2, pp. 246-255. http://geodesic.mathdoc.fr/item/TMF_1995_103_2_a4/

[1] Dubreil-Jacotin M. L., J. Math. Pures Appl., 13 (1937), 217–291

[2] Long R. R., Ann. Rev. Fluid Mech., 4 (1972), 69–92 | DOI

[3] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981 | MR

[4] Gabov S. A., Tverskoi M. B., ZhVMiMF, 28:4 (1988), 608–613 | MR | Zbl

[5] Tverskoi M. B., ZhVMiMF, 32:11 (1992), 1825–1829 | MR | Zbl

[6] Pavlov B. S., UMN, 42:6 (1987), 99–131 | MR

[7] Popov I. Yu., Lect. Notes Phys., 324 (1989), 218–229 | DOI | MR | Zbl

[8] Pavlov B. S., Popov I. Yu., TMF, 86:3 (1991), 391–401 | MR

[9] Kiselev A. A., Popov I. Yu., TMF, 89:1 (1991), 11–17 | MR

[10] Popov I. Yu., J. Math. Phys., 33:11 (1992), 3794–3801 | DOI | MR | Zbl

[11] Popov I. Yu., J. Math. Phys., 33:5 (1992), 1685–1689 | DOI | MR | Zbl

[12] Birman M. Sh., Solomyak M. Z., Advances in Sov. Math., 7, 1–57 | MR

[13] Albeverio S., Gesztezy F., Hoegh-Kron R., Holden H., Solvable Models in Quantum Mechanics, Springer, Berlin, 1988 | MR | Zbl

[14] Demkov Yu. N., Ostrovskii V. N., Metod potentsialov nulevogo radiusa v atomnoi fizike, LGU, L., 1975

[15] Shondin Yu. G., TMF, 74:3 (1988), 331–344 | MR | Zbl

[16] Azizov T. Ya., Iokhvidov I. S., Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986 | MR

[17] Relei Dzh. V., Teoriya zvuka, Gostekhizdat, M., 1955

[18] Laks P., Fillips R., Teoriya rasseyaniya, Mir, M., 1971 | MR