Noncommutative analog of functional superanalysis
Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 2, pp. 233-245
Cet article a éte moissonné depuis la source Math-Net.Ru
A noncommutative analysis being a natural extension of the superanalysis by Vladimirov and Volovich is constructed (instead of supercommutative Banach algebras arbitrary noncommutative Banach algebras are considered). Based on this analysis the noncommutative theory of distributions is developed. It can be applied further to Feynman integration. As the noncommutative algebras one can use the Weil and the Clifford algebras and also another algebras of quantum observables.
@article{TMF_1995_103_2_a3,
author = {A. Yu. Khrennikov},
title = {Noncommutative analog of functional superanalysis},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {233--245},
year = {1995},
volume = {103},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1995_103_2_a3/}
}
A. Yu. Khrennikov. Noncommutative analog of functional superanalysis. Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 2, pp. 233-245. http://geodesic.mathdoc.fr/item/TMF_1995_103_2_a3/
[1] Vladimirov V. S., Volovich I. V., TMF, 59:1 (1984), 3–27 | MR | Zbl
[2] Vladimirov V. S., Volovich I. V., TMF, 60:2 (1984), 169–198 | MR | Zbl
[3] Khrennikov A. Yu., UMN, 43:2 (1988), 72–114 | MR
[4] De Witt B. S., Supermanifolds, Univ. Press, Cambridge, 1984 | MR | Zbl
[5] Rogers A., J. Math. Phys., 21 (1980), 724–731 | MR
[6] Khrennikov A. Yu., TMF, 73:3 (1987), 420–429 | MR
[7] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1970 | MR
[8] Khrennikov A. Yu., DAN SSSR, 321 (1991), 722–726 | MR | Zbl
[9] Aref\rq eva I. Ya., Volovich I. V., Phys. Lett. B, 268 (1991), 179–187 | DOI | MR