Three-dimensional manifestly Poincaré-invariant approach to relativistic three-body problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 2, pp. 200-232 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The three-dimensional manifestly Poincaré-invariant approach to the relativistic three-body problem which satisfies the requirement of the cluster separability and does not lead to unphysical so-called “spurious bound states” is developed. It is shown that these requirements determine the possible forms of the pair interaction operators. The problem is solved with allowance for the dependence of the interaction operators on the spectral parameter. This dependence caused by the structure of particles (i. e. reflection of the fact that the total Hilbert space of the state vectors includes not only the three-body configurations) and it leads to appearance of some factors in the cross sections of the physical processes. Two alternative formulations of the method are investigated. In the first formulation the equations are written for transition amplitudes between state vectors of the free particles. In the second one the complete orthogonal sets of the state vectors of interacting particles in the two-body scattering channels are used. In the framework of the helicity formalism the partial-wave decomposition of the three-body equations for particles with arbitrary spins is performed.
@article{TMF_1995_103_2_a2,
     author = {A. N. Safronov},
     title = {Three-dimensional manifestly {Poincar\'e-invariant} approach to relativistic three-body problem},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {200--232},
     year = {1995},
     volume = {103},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_103_2_a2/}
}
TY  - JOUR
AU  - A. N. Safronov
TI  - Three-dimensional manifestly Poincaré-invariant approach to relativistic three-body problem
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 200
EP  - 232
VL  - 103
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_103_2_a2/
LA  - ru
ID  - TMF_1995_103_2_a2
ER  - 
%0 Journal Article
%A A. N. Safronov
%T Three-dimensional manifestly Poincaré-invariant approach to relativistic three-body problem
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 200-232
%V 103
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1995_103_2_a2/
%G ru
%F TMF_1995_103_2_a2
A. N. Safronov. Three-dimensional manifestly Poincaré-invariant approach to relativistic three-body problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 2, pp. 200-232. http://geodesic.mathdoc.fr/item/TMF_1995_103_2_a2/

[1] Tjon J. A., Few Body Syst., Suppl.:1 (1986), 445–455

[2] Kopaleishvili T. I., Voprosy teorii vzaimodeistviya $\pi $-mezonov s yadrami, Energoatomizdat, M., 1984

[3] Afnan I. R., Pearce B. C., Phys. Rev., C31:3 (1985), 986–991

[4] Gross F., Milana J., Phys. Rev., D43:7 (1991), 2401–2417

[5] Tiemeijer P. C., Proc. 14-th European Conference on Few-Body Problems in Physics (Amsterdam, The Netherlands, 23–27 August 1993), 43

[6] Salpeter E., Bethe H. A., Phys. Rev., 84:6 (1951), 1232–1242 | DOI | MR | Zbl

[7] Shelest V. P., Stoyanov D., Phys. Lett., 13:3 (1964), 253–255 | DOI | MR

[8] Stoyanov D., Tavkhelidze A. N., Phys. Lett., 13:1 (1964), 76–77 | DOI | MR

[9] Faasen E., Tjon J. A., Phys. Rev., 33 (1986), 2105–2112 | DOI

[10] Gross F., Van Order J. W., Holinde K., Phys. Rev., C45:5 (1992), 2094–2132

[11] Weinberg S., Phys. Rev., 150:4 (1966), 1313–1318 | DOI

[12] Namislowski J. M., Weber H. J., Z. Phys. A: Atoms and Nuclei, 295 (1980), 219–234 | DOI | MR

[13] Logunov A. A., Tavkhelidze A. N., Nuovo Cimento, 23:2 (1963), 380–399 | DOI

[14] Faustov R. N., EChAYa, 3:1 (1972), 238–268

[15] Rizov V. A., Todorov I. T., EChAYa, 6:3 (1975), 669–742 | MR

[16] Blankenbecler R., Sugar R., Phys. Rev., 142:4 (1966), 1051–1059 | DOI | MR

[17] Kadyshevskii V. G., Mir-Kasimov R. M., Skachkov N. B., EChAYa, 2:3 (1972), 635–690

[18] Gross F., Phys. Rev., C26 (1982), 2203–2225 ; Few-Body Syst., Suppl.:1 (1986), 432–443 | DOI

[19] Garsevanishvili V. R., Kvinikhidze A. N., Matveev A. N., Tavkhelidze A. N., Faustov R. N., TMF, 25:1 (1975), 37–42

[20] Frohlich J., Schwarz K., Zingl H. F. K., Phys. Rev., 27:1 (1983), 265–276 | DOI

[21] Alessandrini V. A., Omnes R. L., Phys. Rev., 139B:1 (1965), 167–178 | DOI

[22] Freedman D. Z., Lovelace C., Namislowski J. M., Nuovo Cimento, 43A (1966), 258–324 | DOI

[23] Aaron R., Amado R. D., Young J. E., Phys. Rev., 174:5 (1968), 2022–2032 | DOI

[24] Taylor J. G., Phys. Rev., 150:4 (1966), 1321–1330 | DOI

[25] Kvinikhidze A. N., Stoyanov D. Ts., TMF, 16:1 (1973), 42–51

[26] Vinogradov V. M., TMF, 12:1 (1972), 29–39 ; 10, 338–348 | MR

[27] Gross F., Phys. Rev., C26:5 (1982), 2226–2241

[28] Thomas A. W., Landau R. H., Phys. Rep., 53:3 (1980), 121–212 | DOI

[29] Mathelitsch L., Garsilazo H., Phys. Rev. C, 32:5 (1985), 1635–1645 ; Garsilazo H., J. Math. Phys., 27 (1986), 2576–2583 | DOI | DOI | MR

[30] Arkhipov A. A., Savrin V. I., TMF, 16:3 (1973), 328–338 | MR

[31] Dirac P. A. M., Rev. Mod. Phys., 21:3 (1949), 392–399 | DOI | MR | Zbl

[32] Sokolov S. N., Shatnii A. N., TMF, 37:3 (1978), 291–304 | MR

[33] Currie D. G., Jordan T. E., Sudarshan E. C. G., Rev. Mod. Phys., 35:2 (1963), 350–375 | DOI | MR

[34] Coester F., Helv. Phys. Acta, 38:1 (1965), 7–23 | MR | Zbl

[35] Schierholz G., Nucl. Phys., B7:4 (1968), 432–442 | DOI

[36] Sokolov S. N., DAN SSSR, 233:4 (1977), 575–579 ; ТМФ, 36:2 (1978), 193–207 | MR | MR

[37] Kondratyuk L. A., Terentev M. V., YaF, 31:4 (1980), 1087–1106 | MR

[38] Bakker B. L. G., Kondratyuk L. A., Nucl. Phys., B158:2–3 (1979), 497–519 | DOI | MR

[39] Leutwyler H., Stern J., Ann. of Phys., 112:1 (1979), 490–500 | MR

[40] Coester F., Polyzou W. N., Phys. Rev., D26:6 (1982), 1348–1367 | MR

[41] Foldy L. L., Phys. Rev., 122:1 (1961), 275–288 | DOI

[42] Foldy L. L., Krajcik R. A., Phys. Rev., D12:6 (1975), 1700–1710 | MR

[43] Lev F. M., EChAYa, 21:5 (1990), 1251–1293

[44] Safronov A. N., TMF, 89:3 (1991), 420–437 ; Трехмерная ковариантная формулировка релятивистской проблемы трех тел, Деп. No 2036–B87, ВИНИТИ, М., 1987; “Микроскопические методы в теории систем нескольких частиц”, Материалы Международного семинара, Т. 1 (15–21 августа 1988), Калинин, 1988, 11–15 | MR

[45] Garcilazo H., Mathelitsch L., Phys. Rev., C28:3 (1983), 1272–1276

[46] Merkurev S. P., Faddeev L. D., Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, M., 1985 | MR

[47] Wick G. C., Ann. of Phys., 18 (1962), 65–80 | DOI | MR | Zbl

[48] Shmid E., Tsigelman Kh., Problema trekh tel v kvantovoi mekhanike, per. s angl., Nauka, M., 1972 | MR | Zbl

[49] Alt E. O., Grassberger P., Sandhas W., Nucl. Phys., B2:2 (1967), 167–180 | DOI | MR

[50] Karlsson B. R., Zeiger E. M., Phys. Rev., D11:4 (1975), 939–946

[51] Abdurakhmanov A., Zubarev A. L., Z. Phys., A322 (1985), 523–525 | DOI

[52] Kuperin Yu. A., Makarov K. A., Merkurev S. P., Motovilov A. K., Pavlov B. S., TMF, 75 (1988), 431–444 ; 76, 242–260 | MR | MR

[53] Safronov A. N., YaF, 57:2 (1994), 208–211

[54] Simonov Yu. A., Phys. Lett., 107B (1981), 1–4 | DOI | MR

[55] Kalashnikova Yu. S., Narodetskii I. M., Yurov V. P., YaF, 49 (1989), 632–643

[56] Lacombe M. et al., Phys. Rev., D12 (1975), 1495–1498