A~technique for calculating the $\gamma$-matrix structures of the diagrams of a~total four-fermion interaction with infinite number of vertices $d=2+\epsilon$ dimensional regularization
Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 2, pp. 179-191

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known [1] that in the dimensional regularization $d=2+\epsilon$ any four-fermion interaction generates an infinite number of the counterterms $(\bar \psi \gamma _{\alpha _1\dots \alpha _n}^{(n)}\psi )^2$, where $\gamma _{\alpha _1\dots \alpha _n}^{(n)}\equiv \operatorname {As}[\gamma _{\alpha _1}\dots \gamma _{\alpha _n}]$ is the antisymmetrized product of $\gamma$-matrices. A total multiplicatively renormalizable model includes all such vertices and, therefore, calculation of $\gamma$-matrix multipliers of the corresponding diagrams is a non-trivial task. An effective technique for performing such calculations is proposed. It includes: the realization of the $\gamma$-matrices by the operator free fermion field, utilization of generation functions and functionals and different versions of Wick theorem, reduction of the $d$-dimensional problem to $d=1$. The general method is illustrated by the calculations of $\gamma$-factors of one- and two-loop diagrams with an arbitrary set of vertices $\gamma ^{(n)}\otimes \gamma ^{(n)}$.
@article{TMF_1995_103_2_a0,
     author = {A. N. Vasil'ev and S. \`E. Derkachev and N. A. Kivel'},
     title = {A~technique for calculating the $\gamma$-matrix structures of the diagrams of a~total four-fermion interaction with infinite number of vertices $d=2+\epsilon$ dimensional regularization},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--191},
     publisher = {mathdoc},
     volume = {103},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_103_2_a0/}
}
TY  - JOUR
AU  - A. N. Vasil'ev
AU  - S. È. Derkachev
AU  - N. A. Kivel'
TI  - A~technique for calculating the $\gamma$-matrix structures of the diagrams of a~total four-fermion interaction with infinite number of vertices $d=2+\epsilon$ dimensional regularization
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 179
EP  - 191
VL  - 103
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_103_2_a0/
LA  - ru
ID  - TMF_1995_103_2_a0
ER  - 
%0 Journal Article
%A A. N. Vasil'ev
%A S. È. Derkachev
%A N. A. Kivel'
%T A~technique for calculating the $\gamma$-matrix structures of the diagrams of a~total four-fermion interaction with infinite number of vertices $d=2+\epsilon$ dimensional regularization
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 179-191
%V 103
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1995_103_2_a0/
%G ru
%F TMF_1995_103_2_a0
A. N. Vasil'ev; S. È. Derkachev; N. A. Kivel'. A~technique for calculating the $\gamma$-matrix structures of the diagrams of a~total four-fermion interaction with infinite number of vertices $d=2+\epsilon$ dimensional regularization. Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 2, pp. 179-191. http://geodesic.mathdoc.fr/item/TMF_1995_103_2_a0/