Renormalized diagram expansions in effective parameter for charged model of water
Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 1, pp. 97-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Diagram series with respect to the electrostatic part of the interaction are constructed for the charged models widely used in the numerical modeling of polar systems. A renormalization procedure consisting of transition to irreducible diagrams is proposed. As a result of this transition, expansions with respect to an effective small parameter arise. The constructed expansion is used to solve the problem of the surface polarization at the water–vapor interface.
@article{TMF_1995_103_1_a7,
     author = {V. L. Kuz'min},
     title = {Renormalized diagram expansions in effective parameter for charged model of water},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {97--108},
     year = {1995},
     volume = {103},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_103_1_a7/}
}
TY  - JOUR
AU  - V. L. Kuz'min
TI  - Renormalized diagram expansions in effective parameter for charged model of water
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 97
EP  - 108
VL  - 103
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_103_1_a7/
LA  - ru
ID  - TMF_1995_103_1_a7
ER  - 
%0 Journal Article
%A V. L. Kuz'min
%T Renormalized diagram expansions in effective parameter for charged model of water
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 97-108
%V 103
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1995_103_1_a7/
%G ru
%F TMF_1995_103_1_a7
V. L. Kuz'min. Renormalized diagram expansions in effective parameter for charged model of water. Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 1, pp. 97-108. http://geodesic.mathdoc.fr/item/TMF_1995_103_1_a7/

[1] Nienhuis G., Deutch J. M., J. Chem. Phys., 55 (1971), 4213 | DOI

[2] Wertheim M. S., Mol. Phys., 26 (1973), {P. 1425; 1978. V. 36. P. 1217} | DOI

[3] Storonkin B. A., TMF, 25 (1975), 395 | MR

[4] Ramshaw J. D., Chem. Phys., 64 (1976), 3666 ; 66 (1977), 3134

[5] Hoye J. S., Stell G., J. Chem. Phys., 68 (1978), 4145 | DOI

[6] Thompson S. M., Gubbins K. E., Haile J. M., J. Chem. Phys., 75 (1981), 1325 | DOI

[7] Kuzmin V. L., TMF, 44 (1980), 75 ; 53 (1982), 68 | MR

[8] Martynov G. A., Mol. Phys., 49 (1983), 1495 | DOI

[9] Stell G., Patey G. N., Hoye J. S., Adv. Chem. Phys., 48 (1980), 185

[10] Hemmer P. C., J. Math. Phys., 5 (1964), 75 | DOI | MR

[11] Lebowitz J. L., Stell G., Baer S., J. Math. Phys., 6 (1965), 1282 | DOI | MR

[12] Kuzmin V. L., Kolloidn. zh., 45 (1983), 231

[13] Levesque D., Weiss J. J., Patey G. N., Mol. Phys., 51 (1984), 333 | DOI

[14] Koop O. Ya., Perelygin I. S., Zh. strukturnoi khimii, 31 (1990), 69

[15] Stillinger F. H., Rahman A., J. Chem. Phys., 60 (1974), 1545 | DOI

[16] Jorgensen B., J. Chem. Phys., 77 (1982), 4156 | DOI

[17] Caravetta V., Clementi E., J. Chem. Phys., 81 (1984), 2646 | DOI

[18] Jorgensen, Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L., J. Chem. Phys., 79 (1983), 926 | DOI

[19] Wilson M. A., Pohorille A., Pratt L. R., J. Chem. Phys., 90 (1989), 5211 | DOI

[20] Pratt L. R., J. Phys. Chem., 96 (1992), 25 | DOI

[21] Morita T., Hiroike K., Progr. Theor. Phys., 25 (1961), 531 | MR

[22] Vasilev A. N., Funktsionalnye metody v kvantovoi teorii polya i statistike, Izd-vo LGU, L., 1976

[23] Kuzmin V. L., TMF, 31 (1977), 239 | MR

[24] Kuzmin V. L., Kolloidn. zh., 35 (1983), 675 | MR

[25] Brodskaya E. N., Rusanov A. I., Mol. Phys., 67 (1987), 251 | DOI