Embedded eigenvalues and resonances of a generalized Friedrichs model
Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 1, pp. 54-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The existence of resonances and embedded eigenvalues of a multidimensional generalized Friedrichs model is studied. The existence of a Friedrichs model with a given number of eigenvalues located within the continuous spectrum is proved. The existence of resonances is shown, and the widths of these resonances are calculated.
@article{TMF_1995_103_1_a4,
     author = {Zh. I. Abullaev and I. A. Ikromov and S. N. Lakaev},
     title = {Embedded eigenvalues and resonances of a~generalized {Friedrichs} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {54--62},
     year = {1995},
     volume = {103},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_103_1_a4/}
}
TY  - JOUR
AU  - Zh. I. Abullaev
AU  - I. A. Ikromov
AU  - S. N. Lakaev
TI  - Embedded eigenvalues and resonances of a generalized Friedrichs model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 54
EP  - 62
VL  - 103
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_103_1_a4/
LA  - ru
ID  - TMF_1995_103_1_a4
ER  - 
%0 Journal Article
%A Zh. I. Abullaev
%A I. A. Ikromov
%A S. N. Lakaev
%T Embedded eigenvalues and resonances of a generalized Friedrichs model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 54-62
%V 103
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1995_103_1_a4/
%G ru
%F TMF_1995_103_1_a4
Zh. I. Abullaev; I. A. Ikromov; S. N. Lakaev. Embedded eigenvalues and resonances of a generalized Friedrichs model. Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 1, pp. 54-62. http://geodesic.mathdoc.fr/item/TMF_1995_103_1_a4/

[1] Berezin F. A., Shubin M. A., Uravnenie Shredingera, Izd-vo MGU, M., 1983 | MR

[2] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 4, Mir, M., 1982 | MR

[3] Von Neumann J., Wigner E. P., Phys. Zeit., 30 (1929), 465–467

[4] Albeverio S., Ann. Phys., 71 (1972), 167–176 | DOI | MR

[5] Skriganov M. M., Zap. nauchn. sem. LOMI, 38, 1973, 149–152 | MR | Zbl

[6] Naboko S. N., Yakovlev S. I., XVI Vsesoyuznaya shkola po teorii operatorov v funktsionalnykh prostranstvakh, Tezisy dokl. (Nizhnii Novgorod), 1991, 160

[7] Minlos R. A., Sinai Ya. G., TMF, 2:2 (1970), 230–243 | MR

[8] Lavrentev M. A., Shabat B. V., Problemy gidrodinamiki i ikh matematicheskie modeli, Nauka, M., 1977 | MR

[9] Izyumov Yu. A., Medvedev M. V., ZhETF, 1970, no. 2(8), 553–560 | MR

[10] Lakaev S. N., TMF, 91:1 (1992), 51–65 | MR

[11] Lakaev S. N., Tr. sem. im. I. G. Petrovskogo, 11, MGU, M., 1986, 210–238 | MR

[12] Friedrichs K. O., Math. Ann., 115 (1938), 249–272 | DOI | MR | Zbl

[13] Ladyzhenskaya O. A., Faddeev L. D., DAN SSSR, 145:2 (1962), 301–304

[14] Faddeev L. D., Tr. MIAN, 73, Nauka, M., 1964, 292–313 | MR | Zbl

[15] Pavlov B. S., Petras S. V., Funkts. analiz i ego prilozh., 2:4 (1970), 54–61 | MR | Zbl

[16] Pavlov B. S., Algebra i analiz, 4:6 (1992), 220–233 | MR

[17] Lakaev S. N., Shamsiev R., Voprosy matem. analiza i ego prilozheniya, Sb., SamGU, Samarkand, 1983, 50–56 | MR

[18] Abdullaev J. I., Lakaev S. N., Adv. in Sov. Math., 5, ed. R. A. Minlos, 1991, 1–37 | MR

[19] Albeverio S., Gestezi F., Kheeg-Kron R., Kholden Kh., Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991 | MR

[20] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, Ch. II, Nauka, M., 1984 | MR

[21] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M., 1958 | MR | Zbl