Byspinors generated by Dirac matrix field in Riemannian space
Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 1, pp. 32-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A scheme is considered in which bispinors are nothing more than a convenient language for describing information contained in a field of Dirac matrices. The scheme differs fundamentally from the tetrad method of introducing bispinors in Riemannian space. The scheme leads to a nontrivial classification of spin 1/2 particles corresponding to near-vacuum fields of Dirac matrices. A possible connection between the obtained results and various attempts to unify interactions is discussed.
@article{TMF_1995_103_1_a2,
     author = {M. V. Gorbatenko},
     title = {Byspinors generated by {Dirac} matrix field in {Riemannian} space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {32--40},
     year = {1995},
     volume = {103},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_103_1_a2/}
}
TY  - JOUR
AU  - M. V. Gorbatenko
TI  - Byspinors generated by Dirac matrix field in Riemannian space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 32
EP  - 40
VL  - 103
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_103_1_a2/
LA  - ru
ID  - TMF_1995_103_1_a2
ER  - 
%0 Journal Article
%A M. V. Gorbatenko
%T Byspinors generated by Dirac matrix field in Riemannian space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 32-40
%V 103
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1995_103_1_a2/
%G ru
%F TMF_1995_103_1_a2
M. V. Gorbatenko. Byspinors generated by Dirac matrix field in Riemannian space. Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 1, pp. 32-40. http://geodesic.mathdoc.fr/item/TMF_1995_103_1_a2/

[1] Fok V.A., Ivanenko D. D., Zs. f. Phys., 54 (1929), 798 | DOI

[2] Fok V.A., Ivanenko D.D, Compt. Rend., 188 (1929), 1470

[3] Fock V., Zs. f. Phys., 57 (1929), 261 ; A. Einshtein i teoriya otnositelnosti, Mir, M., 1979, 415 | DOI | Zbl

[4] Bade W.L., Jehle H., Rev. Mod. Phys., 25 (1953), 714 | DOI | MR | Zbl

[5] Brill D., Wheeler J., Mod. Phys., 29 (1957), 465 ; Noveishie problemy gravitatsii, IIL, M., 1961, 381 | DOI | MR | Zbl

[6] Gantmakher F.R., Teoriya matrits, Nauka, M., 1967 | MR

[7] Penrouz R., Struktura prostranstva-vremeni, Mir, M., 1972 | MR

[8] Vladimirov Yu.S., Sistemy otscheta v teorii gravitatsii, Energoiadat, M., 1982

[9] Kibble T.W.B., J. of Math. Phys., 2 (1961), 212 ; Elementarnye chastitsy i kompensiruyuschie polya, Mir, M., 1964, 274 | DOI | MR | Zbl

[10] Belinfante F.J., Physica, 7 (1940), 305 | DOI | MR | Zbl

[11] Edward E. Fairchild, Jr., Phys. Rev. D, 16 (1977), 2438 | DOI | MR

[12] Gorbatenko M.B., Romanov Yu.A., TMF, 1 (1969), 222

[13] Gorbatenko M.V., Romanov Yu.A., TMF, 3 (1970), 183

[14] Gorbatenko M.V., Romanov Yu.A., DAN SSSR, 190 (1970), 805 | MR | Zbl

[15] Baum I.V., Gorbatenko M.V., Romanov Yu.A., TMF, 6 (1971), 338

[16] Gorbatenko M.V., Pushkin A.V., Vopr. atomn. nauki i tekhn., ser. Teor. i prikl. fizika, 1:1 (1984), 49

[17] Mizner Ch., Torn K., Uiler D., Gravitatsiya, T. 1, 2, 3, Mir, M., 1977 | MR

[18] Shveber S., Vvedenie v relyativistskuyu kvantovuyu teoriyu polya, Glava 1, IIL, M., 1963

[19] Sen Gupta, Nuovo Cimento, XXXVI (1965), 451

[20] Zommerfeld A., Stroenie atoma i spektry, Tom II, GITTL, M., 1956 | MR

[21] Hestenes D., J. Math. Phys., 8 (1967), 798 | DOI