Resolvent estimates and the spectrum of the Dirac operator with periodical potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 1, pp. 3-22

Voir la notice de l'article provenant de la source Math-Net.Ru

Some estimates of the norm of resolvent of Dirac operator on $n$-dimensional tores ($n\ge 2$) for complex values of quasimomentum are given. The absolutely continuity of the spectrum of periodical Dirac operator with potential $V\in L_{\mathrm {\mathrm {loc}}}^\beta (\mathbb R^3)$, $\beta >3$, is proved.
@article{TMF_1995_103_1_a0,
     author = {L. I. Danilov},
     title = {Resolvent estimates and the spectrum of the {Dirac} operator with periodical potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--22},
     publisher = {mathdoc},
     volume = {103},
     number = {1},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_103_1_a0/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - Resolvent estimates and the spectrum of the Dirac operator with periodical potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 3
EP  - 22
VL  - 103
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_103_1_a0/
LA  - ru
ID  - TMF_1995_103_1_a0
ER  - 
%0 Journal Article
%A L. I. Danilov
%T Resolvent estimates and the spectrum of the Dirac operator with periodical potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 3-22
%V 103
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1995_103_1_a0/
%G ru
%F TMF_1995_103_1_a0
L. I. Danilov. Resolvent estimates and the spectrum of the Dirac operator with periodical potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 103 (1995) no. 1, pp. 3-22. http://geodesic.mathdoc.fr/item/TMF_1995_103_1_a0/