Self-dual Yang--Mills fields in $d=4$ and integrable systems in~$1\leq d\leq 3$
Teoretičeskaâ i matematičeskaâ fizika, Tome 102 (1995) no. 3, pp. 384-419
Voir la notice de l'article provenant de la source Math-Net.Ru
The Ward correspondence between self-dual Yang–Mills fields and holomorphic vector bundles is used to develop a method for reducing the Lax pair for the self-duality equations of the Yang–Mills model in $d=4$ with respect to the action of continuous symmetry groups. It is well known that reductions of the self-duality equations lead to systems of nonlinear differential equations in dimension $1\leq d\leq 3$. For the integration of the reduced equations, it is necessary to find a Lax pair whose compatibility conditions is these equations. The method makes it possible to obtain systematically a Lax representation for the reduced self-duality equations. This is illustrated by a large number of examples.
@article{TMF_1995_102_3_a7,
author = {T. A. Ivanova and A. D. Popov},
title = {Self-dual {Yang--Mills} fields in $d=4$ and integrable systems in~$1\leq d\leq 3$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {384--419},
publisher = {mathdoc},
volume = {102},
number = {3},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1995_102_3_a7/}
}
TY - JOUR AU - T. A. Ivanova AU - A. D. Popov TI - Self-dual Yang--Mills fields in $d=4$ and integrable systems in~$1\leq d\leq 3$ JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1995 SP - 384 EP - 419 VL - 102 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1995_102_3_a7/ LA - ru ID - TMF_1995_102_3_a7 ER -
T. A. Ivanova; A. D. Popov. Self-dual Yang--Mills fields in $d=4$ and integrable systems in~$1\leq d\leq 3$. Teoretičeskaâ i matematičeskaâ fizika, Tome 102 (1995) no. 3, pp. 384-419. http://geodesic.mathdoc.fr/item/TMF_1995_102_3_a7/