@article{TMF_1995_102_3_a7,
author = {T. A. Ivanova and A. D. Popov},
title = {Self-dual {Yang{\textendash}Mills} fields in $d=4$ and integrable systems in~$1\leq d\leq 3$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {384--419},
year = {1995},
volume = {102},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1995_102_3_a7/}
}
TY - JOUR AU - T. A. Ivanova AU - A. D. Popov TI - Self-dual Yang–Mills fields in $d=4$ and integrable systems in $1\leq d\leq 3$ JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1995 SP - 384 EP - 419 VL - 102 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1995_102_3_a7/ LA - ru ID - TMF_1995_102_3_a7 ER -
T. A. Ivanova; A. D. Popov. Self-dual Yang–Mills fields in $d=4$ and integrable systems in $1\leq d\leq 3$. Teoretičeskaâ i matematičeskaâ fizika, Tome 102 (1995) no. 3, pp. 384-419. http://geodesic.mathdoc.fr/item/TMF_1995_102_3_a7/
[1] Atiyah M. F., Classical Geometry of Yang-Mills Fields, Scuola Normale Superiore, Pisa, 1979 ; Ward R. S., Wells R. O. Jr, Twistor Geometry and Field Theory, Cambridge University Press, Cambridge, 1990 | MR | Zbl | MR
[2] Ablowitz M. J., Clarkson P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambrige University Press, Cambridge, 1991 | MR | Zbl
[3] Ward R. S., Phil. Trans. R. Soc. Lond. A, 315 (1985), 451–457 ; Lect. Notes in Phys, 280, 1987, 106–116 ; Ward R. S., Twistors in Mathematics and Physics, London Mathematical Society Lecture Note Series, 156, eds. T. N. Bailey and R. J. Baston, Cambridge University Press, Cambridge, 1990, 246–259 | DOI | MR | Zbl | DOI | Zbl | MR
[4] Mason L. J., Sparling G. A. J., Phys. Lett. A, 137:1–2 (1989), 29–33 ; J. Geom. and Phys., 8 (1992), 243–271 | DOI | MR | DOI | MR | Zbl
[5] Bakas I., Depireux D. A., Mod. Phys. Lett. A, 6:5 (1991), 399–409 ; 17, 1561–1573 | DOI | MR | MR | Zbl
[6] Ablowitz M. J., Chakravarty S., Clarkson P. A., Phys. Rev. Lett., 65:9 (1990), 1085–1087 ; Chakravarty S., Ablowitz M. J., Painlevé Transcendents, their Asymptotics and Physical Applications, NATO ASI Series B, 278, eds. D. Levi and P. Winternitz, Plenum Press, New York, 1992, 331–343 | DOI | MR | Zbl | DOI | MR | Zbl
[7] Chakravarty S., Kent S., Newman E. T., J. Math. Phys., 31:9 (1990), 2253–2257 ; 33:1 (1992), 382–387 ; Strachan I. A. B., Phys. Lett. A, 154:3–4 (1991), 123–126 ; Ivanova T. A., Popov A. D., Lett. Math. Phys., 23 (1991), 29–34 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl
[8] Ivanova T. A., Popov A. D., Phys. Lett. A, 170:4 (1992), 293–299 | DOI | MR
[9] Woodhouse N. M. J., Class. Quant. Grav., 4 (1987), 799–814 ; Woodhouse N. M. J., Mason L. J., Nonlinearity, 1 (1988), 73–114 ; Fletcher J., Woodhouse N. M. J., Twistors in Mathematics and Physics, London Mathematical Society Lecture Note Series, 156, eds. T. N. Bailey, R. J. Baston, Cambridge University Press, Cambridge, 1990, 260–282 | DOI | MR | Zbl | DOI | MR | Zbl | MR
[10] Mason L. J., Woodhouse N. M. J., Nonlinearity, 6 (1993), 569–581 | DOI | MR | Zbl
[11] Tafel J., J. Math. Phys., 34:5 (1993), 1892–1907 | DOI | MR | Zbl
[12] Kovalyov M., Legaré M., Gagnon L., J. Math. Phys., 34:7 (1993), 3245–3268 | DOI | MR | Zbl
[13] Ward R. S., Nucl. Phys. B, 236:2 (1984), 381–396 ; Ablowitz M. J., Costa D. J., Tenenblat K., SIAM, 77:1 (1987), 37–46 ; Popov A. D., JINR Rapid Commun., 6 (1992), 57–62; Strachan I. A. B., J. Math. Phys., 34:1 (1993), 243–259 | DOI | MR | MR | Zbl | DOI | MR | Zbl
[14] Nakamura Y., J. Math. Phys., 29:1 (1988), 244–245 ; 32:2 (1991), 382–385 ; Takasaki K., Commun. Math. Phys., 127:2 (1990), 225–238 ; Schiff J., Preprint IASSNS–HEP–92/34, 1992; Strachan I. A. B., J. Math. Phys., 33:7 (1992), 2477–2482 ; Ablowitz M. J., Chakravarty S., Takhtajan L. A., Commun. Math. Phys., 158:2 (1993), 289–320 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR
[15] Belavin A. A., Zakharov V. E., Phys. Lett. B, 73:1 (1978), 53–57 ; Ward R. S., Phys. Lett. A, 61:2 (1977), 81–82 | DOI | MR | DOI | MR | Zbl
[16] Legare M., Popov A. D., Pisma v ZhETF, 59:12 (1994), 845–850 | MR
[17] Ivanova T. A., Popov A. D., Pisma v ZhETF, 61:2 (1995), 142–148 | MR
[18] Manakov S. V., Zakharov V. E., Lett. Math. Phys., 5:3 (1981), 247–253 | DOI | MR
[19] Ward R. S., J. Math. Phys., 29:2 (1988), 386–389 ; Nonlinearity, 1 (1988), 671–679 ; Commun. Math. Phys., 128:2 (1990), 319–332 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[20] Ooguri H., Vafa C., Nucl. Phys. B, 367:1 (1991), 83–104 ; Nishino H., Gates S. J. Jr., Mod. Phys. Lett. A, 7:27 (1992), 2543–2554 ; Ketov S. V., Nishino H., Gates S. J. Jr., Phys. Lett. B, 307:3–4 (1993), 331–338 ; Nucl. Phys. B, 393:1–2 (1993), 149–210 | DOI | MR | DOI | MR | MR | DOI | MR | Zbl
[21] Kobayashi S., Nomizu K., Foundations of Differential Geometry, Vol. I, Interscience Publ., 1963 ; Vol. II, John Wiley Sons, New York, 1969 | MR | Zbl | Zbl
[22] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya: Metody i prilozheniya, Nauka, M., 1986 | MR
[23] Lichnerowicz A., Geometrie des groupes de transformations, Dunod, Paris, 1958 ; Kobayashi S., Transformation groups in differential geometry, Springer-Verlag, Berlin, 1972 | MR | Zbl | MR | Zbl
[24] Griffiths P., Harris J., Principles of algebraic geometry, John Wiley Sons, New York, 1978 | MR | Zbl
[25] Atiyah M. F., Hitchin N. J., Singer I. M., Proc. R. Soc. Lond. A, 362 (1978), 425–461 ; Woodhouse N. M. J., Class. Quantum Grav., 2:3 (1985), 257–291 | DOI | MR | Zbl | DOI | MR | Zbl
[26] Sergeev A. G., “Teoriya tvistorov i klassicheskie kalibrovochnye polya: Obzor”, Monopoli: topologicheskie i variatsionnye metody, Mir, M., 1989, 492–555
[27] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 ; Olver P. J., Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, 1986 | MR | MR
[28] Forgács P., Manton N. S., Commun. Math. Phys., 72:1 (1980), 15–35 | DOI | MR
[29] WinternitzP., Partially Integrable Evolution Equations in Physics, NATO ASI series C, 310, eds. R. Conte and N. Boccara, Kluwer Academic Publ., 1990, 515–567 | MR
[30] Nyuell A., Solitony v matematike i fizike, Mir, M., 1989 | MR
[31] Belinskii V. A., Zakharov V. E., ZhETF, 75:12 (1978), 1953–1971 | MR
[32] Burtsev S. P., Zakharov V. E., Mikhailov A. V., TMF, 70:3 (1987), 323–341 | MR | Zbl
[33] Calogero F., Degasperis A., Commun. Math. Phys., 63:2 (1978), 155–176 | DOI | MR | Zbl
[34] Maison D., Phys. Rev. Lett., 41 (1978), 521–522 ; J. Math. Phys., 20:5 (1979), 871–877 ; Preprint MPI–PAE/ PTh–3/82, 1982 | DOI | MR | DOI | MR
[35] Mikhailov A. V., Yaremchuk A. I., Nucl. Phys. B, 202:3 (1982), 508–522 | DOI | MR
[36] Leese R., J. Math. Phys., 30:9 (1989), 2072–2077 ; Попов А. Д., ЯФ, 55:12 (1992), 3371–3374 | DOI | MR | Zbl | MR
[37] Semenov-Tyan-Shanskii M. A., Faddeev L. D., Vestn. Leningr. un-ta, 1977, no. 13, 81–88 | MR
[38] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl
[39] Fordy A., Kulish P. P., Commun. Math. Phys., 89:3 (1983), 427–443 ; Fordy A., Wojciechowski S., Marshall I., Phys. Lett. A, 113:8 (1986), 395–400 | DOI | MR | Zbl | DOI | MR
[40] Wadati M., Kamijo T., Progr. Theor. Phys., 52:2 (1974), 397–414 | DOI | MR | Zbl
[41] Calogero F., Degasperis A., Nuovo Cimento B, 39:1 (1977), 1–54 | DOI | MR
[42] Athorne C., Fordy A. P., J. Phys. A, 20:6 (1987), 1377–1386 | DOI | MR | Zbl
[43] Winternitz P., Painlevé Transcendents, their Asymptotics and Physical Applications, NATO ASI Series B, 278, eds. D. Levi and P. Winternitz, Plenum Press, New York, 1992, 425–431 | DOI | MR | Zbl
[44] Burbaki N., Gruppy i algebry Li, Mir, M., 1972 | MR | Zbl
[45] Leznov A. N., Savelev M. V., Gruppovye metody integrirovaniya nelineinykh dinamicheskikh sistem, Nauka, M., 1985 | MR | Zbl
[46] Bogoyavlenskii O. I., Izv. AN SSSR. Ser. matem., 52:2 (1988), 243–266 ; УМН, 46:3 (1991), 3–48 | MR | MR | Zbl
[47] Bobenko A. I., Reyman A. G., Semenov-Tian-Shansky M. A., Commun. Math. Phys., 122:2 (1989), 321–354 | DOI | MR
[48] Trofimov V. V., Fomenko A. T., UMN, 39:2(236) (1984), 3–56 ; “Геометрия скобок Пуассона и методы интегрирования по Лиувиллю систем на симметрических пространствах”, Совр. пробл. матем. Новейшие достижения, 29, ВИНИТИ, M., 1986, 3–108 | MR | Zbl | MR | Zbl