Self-dual Yang--Mills fields in $d=4$ and integrable systems in~$1\leq d\leq 3$
Teoretičeskaâ i matematičeskaâ fizika, Tome 102 (1995) no. 3, pp. 384-419

Voir la notice de l'article provenant de la source Math-Net.Ru

The Ward correspondence between self-dual Yang–Mills fields and holomorphic vector bundles is used to develop a method for reducing the Lax pair for the self-duality equations of the Yang–Mills model in $d=4$ with respect to the action of continuous symmetry groups. It is well known that reductions of the self-duality equations lead to systems of nonlinear differential equations in dimension $1\leq d\leq 3$. For the integration of the reduced equations, it is necessary to find a Lax pair whose compatibility conditions is these equations. The method makes it possible to obtain systematically a Lax representation for the reduced self-duality equations. This is illustrated by a large number of examples.
@article{TMF_1995_102_3_a7,
     author = {T. A. Ivanova and A. D. Popov},
     title = {Self-dual {Yang--Mills} fields in $d=4$ and integrable systems in~$1\leq d\leq 3$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {384--419},
     publisher = {mathdoc},
     volume = {102},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_102_3_a7/}
}
TY  - JOUR
AU  - T. A. Ivanova
AU  - A. D. Popov
TI  - Self-dual Yang--Mills fields in $d=4$ and integrable systems in~$1\leq d\leq 3$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 384
EP  - 419
VL  - 102
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_102_3_a7/
LA  - ru
ID  - TMF_1995_102_3_a7
ER  - 
%0 Journal Article
%A T. A. Ivanova
%A A. D. Popov
%T Self-dual Yang--Mills fields in $d=4$ and integrable systems in~$1\leq d\leq 3$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 384-419
%V 102
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1995_102_3_a7/
%G ru
%F TMF_1995_102_3_a7
T. A. Ivanova; A. D. Popov. Self-dual Yang--Mills fields in $d=4$ and integrable systems in~$1\leq d\leq 3$. Teoretičeskaâ i matematičeskaâ fizika, Tome 102 (1995) no. 3, pp. 384-419. http://geodesic.mathdoc.fr/item/TMF_1995_102_3_a7/