Riccati scheme for integrating nonlinear systems of differential equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 102 (1995) no. 3, pp. 352-363 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A modification of the Riccati system that makes it possible to reduce to linear problems the initial-value problem for systems of ordinary differential equations with bilinear nonlinearity is discussed. It is shown that from the algebraic point of view it is natural, in the framework of the scheme, to consider functions that take values in an algebra with two multiplications related by a condition of the type of associativity.
@article{TMF_1995_102_3_a3,
     author = {A. Ya. Kazakov},
     title = {Riccati scheme for integrating nonlinear systems of differential equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {352--363},
     year = {1995},
     volume = {102},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_102_3_a3/}
}
TY  - JOUR
AU  - A. Ya. Kazakov
TI  - Riccati scheme for integrating nonlinear systems of differential equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 352
EP  - 363
VL  - 102
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_102_3_a3/
LA  - ru
ID  - TMF_1995_102_3_a3
ER  - 
%0 Journal Article
%A A. Ya. Kazakov
%T Riccati scheme for integrating nonlinear systems of differential equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 352-363
%V 102
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1995_102_3_a3/
%G ru
%F TMF_1995_102_3_a3
A. Ya. Kazakov. Riccati scheme for integrating nonlinear systems of differential equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 102 (1995) no. 3, pp. 352-363. http://geodesic.mathdoc.fr/item/TMF_1995_102_3_a3/

[1] Lorenz E., J. Atm. Sc., 20 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[2] Van-der-Varden B. L., Algebra, Nauka, M., 1976 | MR

[3] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[4] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[5] Zhevlakov K. A., Slinko A. M., Shestakov I. P., Shirshov A. I., Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR | Zbl

[6] Drozd Yu. A., Kirichenko V. V., Konechnomernye algebry, Vischa shkola, Kiev, 1980 | MR | Zbl

[7] Kuzmin E. N., Shestakov I. P., “Neassotsiativnye struktury”, Algebra – 6, Itogi nauki i tekhniki. Ser. Sovrem. probl. mat. Fundam. napravleniya, 57, VINITI, M., 1990, 179–266 | MR | Zbl

[8] Faddeev D. K., Lektsii po algebre, Nauka, M, 1984 | MR

[9] Gledzer E. B., Dolzhanskii S. V., Obukhov A. M., Sistemy gidrodinamicheskogo tipa, Nauka, M., 1981 | MR | Zbl

[10] Veil G., Klassicheskie gruppy, ikh invarianty i predstavleniya, IL, M., 1947

[11] Svinolupov S. I., Funkts. analiz i ego prilozh., 27:4 (1993), 40–53 | MR | Zbl