Сollective excitations in the superconductive phase of the one-band Hubbard model
Teoretičeskaâ i matematičeskaâ fizika, Tome 102 (1995) no. 3, pp. 457-462 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of functional integration is used to investigate the collective excitations in the superconducting state of the one-band two-dimensional Hubbard model with repulsion. The energy spectrum of the Bose modes is obtained. The existence of a branch of Bogolyubov sound is demonstrated. The phase structure and symmetry of the model are also considered.
@article{TMF_1995_102_3_a10,
     author = {V. N. Popov and P. A. Sevastianov},
     title = {{\CYRS}ollective excitations in the superconductive phase of the one-band {Hubbard} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {457--462},
     year = {1995},
     volume = {102},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_102_3_a10/}
}
TY  - JOUR
AU  - V. N. Popov
AU  - P. A. Sevastianov
TI  - Сollective excitations in the superconductive phase of the one-band Hubbard model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 457
EP  - 462
VL  - 102
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_102_3_a10/
LA  - ru
ID  - TMF_1995_102_3_a10
ER  - 
%0 Journal Article
%A V. N. Popov
%A P. A. Sevastianov
%T Сollective excitations in the superconductive phase of the one-band Hubbard model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 457-462
%V 102
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1995_102_3_a10/
%G ru
%F TMF_1995_102_3_a10
V. N. Popov; P. A. Sevastianov. Сollective excitations in the superconductive phase of the one-band Hubbard model. Teoretičeskaâ i matematičeskaâ fizika, Tome 102 (1995) no. 3, pp. 457-462. http://geodesic.mathdoc.fr/item/TMF_1995_102_3_a10/

[1] Anderson P. W., Science, 285 (1987), 1196–1198 | DOI

[2] Emery V. J., Phys. Rev. Lett., 58:26 (1987), 2794–2797 | DOI

[3] Anderson P. W., Bascaran G., Zou Z., Hsu T., Phys. Rev. Lett., 58:26 (1987), 2790–2793 | DOI

[4] Popov V. N., Phys. Lett., A164 (1992), 387 | DOI

[5] Malyshev C., Popov V. N., Phys. Lett., A175 (1993), 69–75 | DOI

[6] Malyshev S., Popov V. N., Zap. nauchn. semin. LOMI, 199, 1992, 147–176 | Zbl

[7] Scalittar R. T., Singh R. R. P., Phys. Rev. Lett., B67:3 (1991), 370–373 | DOI

[8] Kotliar G., Phys. Rev., B37:7 (1989), 3664–3666

[9] Dzyaloshinskii I. E., Polyakov A. M., Wiegmann P. B., Phys. Lett., A127:2 (1988), 112–114 | DOI

[10] Wiegmann P. B., Phys. Rev. Lett., 60:9 (1988), 821–824 | DOI

[11] Polyakov A. M., Mod. Phys. Lett., A3:3 (1988), 325–328 | DOI | MR

[12] Abrikosov A. A., Gorkov L. P., Dzyaloshinskii I. E., Metody kvantovoi teorii polya v statisticheskoi fizike, Fizmatgiz, M., 1962 | MR | Zbl

[13] Dzyaloshinskii I. E., ZhETF, 66 (1987), 848

[14] Dzyaloshinskii I. E., Pisma v ZhETF, 46 (1987), 97

[15] Popov V. N., Functional integrals and collective excitations, Cambridge University Press, 1990 | MR | Zbl

[16] Braun M. A., Problemy teoreticheskoi fiziki, no. 2, Izd-vo LGU, L., 1975, 51–57

[17] Alonso V., Popov V. N, ZhETF, 77 (1977), 1445–1459

[18] Svidzinskii A. V., TMF, 9:2 (1971), 273–290

[19] Andrianov V. V., Popov V. N., TMF, 28:3 (1976), 340–351 | MR