Analytic continuation of tensor fields along geodesics by covariant Taylor series
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 102 (1995) no. 3, pp. 337-344
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that in a certain normal neighborhood of a submanifold – the analog of a normal neighborhood of a point – the covariant derivatives of all orders of an arbitrary tensor field and of the curvature and torsion along geodesics normal to the submanifold, taken at points of the submanifold, determine under conditions of analyticity the given tensor field by Taylor series with tensor coefficients. Explicit expressions are obtained that provide a recursive procedure for calculating the coefficients of the series in any order. Special cases of the expansion of the components of a pseudo-Riemannian metric with respect to a metric connection without torsion for a point and hypersurface are considered.
			
            
            
            
          
        
      @article{TMF_1995_102_3_a1,
     author = {A. N. Tsirulev},
     title = {Analytic continuation of tensor fields along geodesics by covariant {Taylor} series},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {337--344},
     publisher = {mathdoc},
     volume = {102},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_102_3_a1/}
}
                      
                      
                    TY - JOUR AU - A. N. Tsirulev TI - Analytic continuation of tensor fields along geodesics by covariant Taylor series JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1995 SP - 337 EP - 344 VL - 102 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1995_102_3_a1/ LA - ru ID - TMF_1995_102_3_a1 ER -
A. N. Tsirulev. Analytic continuation of tensor fields along geodesics by covariant Taylor series. Teoretičeskaâ i matematičeskaâ fizika, Tome 102 (1995) no. 3, pp. 337-344. http://geodesic.mathdoc.fr/item/TMF_1995_102_3_a1/
