The point interactions in the problem of three quantum particles with internal structure
Teoretičeskaâ i matematičeskaâ fizika, Tome 102 (1995) no. 2, pp. 258-282

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of three quantum particles with internal structure is considered where the pair interactions are described in terms of two-channel Hamiltonians. It is proved that if parameters of the model are such that the total three-body Hamiltonian is semibounded, the Faddeev equations are of Fredholm type. The boundary value problems are formulated for the Faddeev differential equations which can be used for search of the scattering wave functions.
@article{TMF_1995_102_2_a8,
     author = {K. A. Makarov and V. V. Melezhik and A. K. Motovilov},
     title = {The point interactions in the problem of three quantum particles with internal structure},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {258--282},
     publisher = {mathdoc},
     volume = {102},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_102_2_a8/}
}
TY  - JOUR
AU  - K. A. Makarov
AU  - V. V. Melezhik
AU  - A. K. Motovilov
TI  - The point interactions in the problem of three quantum particles with internal structure
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 258
EP  - 282
VL  - 102
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_102_2_a8/
LA  - ru
ID  - TMF_1995_102_2_a8
ER  - 
%0 Journal Article
%A K. A. Makarov
%A V. V. Melezhik
%A A. K. Motovilov
%T The point interactions in the problem of three quantum particles with internal structure
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 258-282
%V 102
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1995_102_2_a8/
%G ru
%F TMF_1995_102_2_a8
K. A. Makarov; V. V. Melezhik; A. K. Motovilov. The point interactions in the problem of three quantum particles with internal structure. Teoretičeskaâ i matematičeskaâ fizika, Tome 102 (1995) no. 2, pp. 258-282. http://geodesic.mathdoc.fr/item/TMF_1995_102_2_a8/