Difference Schrödinger equation and $q$-oscillator model
Teoretičeskaâ i matematičeskaâ fizika, Tome 102 (1995) no. 2, pp. 247-257 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A model of $q$-oscillator, wave functions of which in the relativistic configurational $x$-space are expressed through the $q$-Hermite–Szegö polynomials and in the momentum $p$-space – through the Stieltjes–Wigert polynomials is considered. Some properties of the $q$-Hermite–Szegö polynomials are studied.
@article{TMF_1995_102_2_a7,
     author = {Sh. M. Nagiyev},
     title = {Difference {Schr\"odinger} equation and $q$-oscillator model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {247--257},
     year = {1995},
     volume = {102},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_102_2_a7/}
}
TY  - JOUR
AU  - Sh. M. Nagiyev
TI  - Difference Schrödinger equation and $q$-oscillator model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 247
EP  - 257
VL  - 102
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_102_2_a7/
LA  - ru
ID  - TMF_1995_102_2_a7
ER  - 
%0 Journal Article
%A Sh. M. Nagiyev
%T Difference Schrödinger equation and $q$-oscillator model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 247-257
%V 102
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1995_102_2_a7/
%G ru
%F TMF_1995_102_2_a7
Sh. M. Nagiyev. Difference Schrödinger equation and $q$-oscillator model. Teoretičeskaâ i matematičeskaâ fizika, Tome 102 (1995) no. 2, pp. 247-257. http://geodesic.mathdoc.fr/item/TMF_1995_102_2_a7/

[1] Macfarlane A. J., J. Phys. A. Math. Gen., 22 (1989), 4581 | DOI | MR | Zbl

[2] Biedenharn L. C., J. Phys. A. Math. Gen., 22 (1989), L873 | DOI | MR | Zbl

[3] Kagramanov E. D., Mir-Kasimov R. M., Nagiev Sh. M., Tr. VIII mezhdun. sovesch. po problemam kvantovoi teorii polya (Alushta, 1987), OIYaI, Dubna, 1988, 256–261

[4] Kagramanov E. J., Mir-Kasimov R. M., Nagiev Sh. M., J. Math. Phys., 31:7 (1990), 1733 | DOI | MR | Zbl

[5] Mir-Kasimov R. M., $SU_q(1,1)$ and the Relativistic Oscillator, Preprint ICTP. IC/90/383 | MR

[6] Damaskinskii E. V., Kulish P. P., Zap. nauchn. semin. LOMI, 189, 1990 | MR

[7] Atakishiev N. M., Suslov S. K., TMF, 85:1 (1990), 64–73 | MR | Zbl

[8] Atakishiev N. M., Suslov S. K., TMF, 87:1 (1991), 154–156 | MR | Zbl

[9] Gasper G., Rahman M., Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[10] Atakishiyev N. M., Mir-Kasimov R. M., Nagiev Sh. M., Ann. der Phys. (Leipzig), 42:1 (1985), 25 | DOI | MR

[11] Infeld L., Hull T. E., Rev. Mod. Phys., 23:1 (1951), 21 | DOI | MR | Zbl

[12] Feinsilver P., Acta Appl. Math., 13 (1988), 291 | MR | Zbl

[13] Fairlie D. B., J. Phys. A. Math. Gen., 23:25 (1990), L183 | DOI | MR | Zbl

[14] Zhedanov A. S., TMF, 89:2 (1991), 190–204 | MR

[15] Nikiforov A. F., Suslov S. K., Uvarov V. B., Klassicheskie ortogonalnye polinomy diskretnoi peremennoi, Nauka, M., 1985 | MR

[16] Kadyshevsky V. G., Mir-Kasimov R. M., Skachkov N. B., Nuovo Cim., 55A:2 (1968), 233 | DOI

[17] Atakishiev N. M., Mir-Kasimov R. M., Nagiev Sh. M., TMF, 44:1 (1980), 47–62 | MR

[18] Askey R. A., “Continuous $q$-Hermite polynomials when $q>1$”, $q$-Series and Partitions, IMA Volumes in Mathematics and its Applications, ed. D. Stanton, Springer-Verlag, N.Y., 1989, 151 | DOI | MR

[19] Atakishiev N. M., Nagiev Sh. M., TMF, 98:2 (1994), 241–247 | MR | Zbl

[20] Atakishiyev N. M., Frank A., Wolf K. B., “A simple difference realization of the Heisenberg $q$-algebra”, Rep. de Investigation, 3, no. 24, IIMAS-UNAM, Mexico, 1993; J. Math. Phys. (to appear)

[21] Szegö G., Sitz. Preuss. Akad. Wiss. Phys. – Math. Kl., 1926, 242–252 | Zbl

[22] Carlitz L., Duke Math. J., 24 (1957), 251 | MR

[23] Floreanini R., Vinet L., Lett. Math. Phys., 22 (1991), 45 | DOI | MR | Zbl

[24] Suslov S. K., UMN, 44 (1989), 209–226 | MR