Commutative properties of singularly perturbate operators
Teoretičeskaâ i matematičeskaâ fizika, Tome 102 (1995) no. 2, pp. 183-197
Voir la notice de l'article provenant de la source Math-Net.Ru
Let a selfadjoint operator $A$ in Hilbert space $\mathcal H$ commutes with bounded operator $S$ and let $\widetilde A$ be singularly perturbate with respect to $A$, i.e.
$\widetilde A$ coincides with $A$ on a dense domain in $\mathcal H$. The conditions under wich $\widetilde A$ commutes with $S$ are studied. The cases when $S$ is unbounded and when $S$ is replaced for singularly perturbate $\widetilde S$ are also investigated. As an example the Laplace operator in $L_2(\mathbf R^q)$ singularly perturbate by the set of
$\delta$-functions and commuting with symmetrization in $\mathbf R^q$, $q=2,3$ or with regular representations of arbitrary isometric transformations in $\mathbf R^q$, $q\leqslant 3$ is considered.
@article{TMF_1995_102_2_a1,
author = {N. E. Dudkin and V. D. Koshmanenko},
title = {Commutative properties of singularly perturbate operators},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {183--197},
publisher = {mathdoc},
volume = {102},
number = {2},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1995_102_2_a1/}
}
TY - JOUR AU - N. E. Dudkin AU - V. D. Koshmanenko TI - Commutative properties of singularly perturbate operators JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1995 SP - 183 EP - 197 VL - 102 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1995_102_2_a1/ LA - ru ID - TMF_1995_102_2_a1 ER -
N. E. Dudkin; V. D. Koshmanenko. Commutative properties of singularly perturbate operators. Teoretičeskaâ i matematičeskaâ fizika, Tome 102 (1995) no. 2, pp. 183-197. http://geodesic.mathdoc.fr/item/TMF_1995_102_2_a1/