Scattering problem for the differential operator $\partial_x\partial_y+1+a(x,y)\partial_y+
Teoretičeskaâ i matematičeskaâ fizika, Tome 102 (1995) no. 2, pp. 163-182

Voir la notice de l'article provenant de la source Math-Net.Ru

Scattering problem for two-dimensional Klein–Gordon equation with nonconstant coefficients is considered in the framework of the resolvent approach. Jost and retarded/advanced solutions and spectral data are introduced and their properties are presented. Inverse scattering problem is formulated.
@article{TMF_1995_102_2_a0,
     author = {T. I. Garagash and A. K. Pogrebkov},
     title = {Scattering problem for the differential operator $\partial_x\partial_y+1+a(x,y)\partial_y+},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {163--182},
     publisher = {mathdoc},
     volume = {102},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_102_2_a0/}
}
TY  - JOUR
AU  - T. I. Garagash
AU  - A. K. Pogrebkov
TI  - Scattering problem for the differential operator $\partial_x\partial_y+1+a(x,y)\partial_y+
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 163
EP  - 182
VL  - 102
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_102_2_a0/
LA  - ru
ID  - TMF_1995_102_2_a0
ER  - 
%0 Journal Article
%A T. I. Garagash
%A A. K. Pogrebkov
%T Scattering problem for the differential operator $\partial_x\partial_y+1+a(x,y)\partial_y+
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 163-182
%V 102
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1995_102_2_a0/
%G ru
%F TMF_1995_102_2_a0
T. I. Garagash; A. K. Pogrebkov. Scattering problem for the differential operator $\partial_x\partial_y+1+a(x,y)\partial_y+. Teoretičeskaâ i matematičeskaâ fizika, Tome 102 (1995) no. 2, pp. 163-182. http://geodesic.mathdoc.fr/item/TMF_1995_102_2_a0/