Scattering problem for the differential operator $\partial_x\partial_y+1+a(x,y)\partial_y+ 
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 102 (1995) no. 2, pp. 163-182
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Scattering problem for two-dimensional Klein–Gordon equation with nonconstant coefficients is considered in the framework of the resolvent approach. Jost and retarded/advanced solutions and spectral data are introduced and their properties are presented. Inverse scattering problem is formulated.
			
            
            
            
          
        
      @article{TMF_1995_102_2_a0,
     author = {T. I. Garagash and A. K. Pogrebkov},
     title = {Scattering problem for the differential operator $\partial_x\partial_y+1+a(x,y)\partial_y+},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {163--182},
     publisher = {mathdoc},
     volume = {102},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_102_2_a0/}
}
                      
                      
                    TY - JOUR AU - T. I. Garagash AU - A. K. Pogrebkov TI - Scattering problem for the differential operator $\partial_x\partial_y+1+a(x,y)\partial_y+ JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1995 SP - 163 EP - 182 VL - 102 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1995_102_2_a0/ LA - ru ID - TMF_1995_102_2_a0 ER -
%0 Journal Article %A T. I. Garagash %A A. K. Pogrebkov %T Scattering problem for the differential operator $\partial_x\partial_y+1+a(x,y)\partial_y+ %J Teoretičeskaâ i matematičeskaâ fizika %D 1995 %P 163-182 %V 102 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1995_102_2_a0/ %G ru %F TMF_1995_102_2_a0
T. I. Garagash; A. K. Pogrebkov. Scattering problem for the differential operator $\partial_x\partial_y+1+a(x,y)\partial_y+. Teoretičeskaâ i matematičeskaâ fizika, Tome 102 (1995) no. 2, pp. 163-182. http://geodesic.mathdoc.fr/item/TMF_1995_102_2_a0/