Vacuum polarization of a complex automorphic scalar field in two-dimensional spacetime with closed null geodesics and the time-machine problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 102 (1995) no. 1, pp. 134-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The quantum authomorphic scalar field in two-dimensional space-time with closed null geodesics (the Cauchy horizon) is considered. The stress energy tensor $\langle T_{\mu\nu}\rangle^{\mathrm{ren}}$ is obtained. It is shown that the value of $\langle T_{\mu\nu}\rangle^{\mathrm{ren}}$ is regular at the Cauchy horizon for specific authomorphic parameter.
@article{TMF_1995_102_1_a12,
     author = {S. V. Sushkov},
     title = {Vacuum polarization of a~complex automorphic scalar field in two-dimensional spacetime with closed null geodesics and the time-machine problem},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {134--149},
     year = {1995},
     volume = {102},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_102_1_a12/}
}
TY  - JOUR
AU  - S. V. Sushkov
TI  - Vacuum polarization of a complex automorphic scalar field in two-dimensional spacetime with closed null geodesics and the time-machine problem
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 134
EP  - 149
VL  - 102
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_102_1_a12/
LA  - ru
ID  - TMF_1995_102_1_a12
ER  - 
%0 Journal Article
%A S. V. Sushkov
%T Vacuum polarization of a complex automorphic scalar field in two-dimensional spacetime with closed null geodesics and the time-machine problem
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 134-149
%V 102
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1995_102_1_a12/
%G ru
%F TMF_1995_102_1_a12
S. V. Sushkov. Vacuum polarization of a complex automorphic scalar field in two-dimensional spacetime with closed null geodesics and the time-machine problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 102 (1995) no. 1, pp. 134-149. http://geodesic.mathdoc.fr/item/TMF_1995_102_1_a12/

[1] Morris M. S., Thorne K. S., Yurtsever U., Phys. Rev. Lett., 61 (1988), 1446–1449 | DOI

[2] Frolov V. P., Phys. Rev. D, 43 (1991), 3878–3894 | DOI | MR

[3] Kim S. W., Thorne K. S., Phys. Rev. D, 43 (1991), 3929–3947 | DOI | MR

[4] Yurtsever U., Class. Quantum Grav., 8 (1991), 1127–1139 | DOI | MR | Zbl

[5] Klinkhammer G., Phys. Rev. D, 46 (1992), 3388–3394 | DOI | MR

[6] Hawking S. W., Phys. Rev. D, 46 (1992), 603–611 | DOI | MR

[7] Visser M., Phys. Rev. D, 47 (1993), 554–565 | DOI | MR

[8] Schulman L. S., Phys. Rev., 176 (1968), 1558–1569 | DOI | MR

[9] Dowker J. S., J. Phys. A, 5 (1972), 936–943 | DOI | MR

[10] Dowker J. S., Banach R., J. Phys. A, 11 (1978), 2255–2284 | DOI | MR

[11] Banach R., Dowker J. S., J. Phys. A, 12 (1979), 2527–2543 ; 2545–2562 | DOI | MR | MR

[12] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M., 1958 | MR | Zbl

[13] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. T. 1. Elementarnye funktsii, Nauka, M., 1981 | MR | Zbl

[14] Cristensen S. M., Phys. Rev. D, 17 (1978), 946–963 | DOI | MR

[15] Mostepanenko V. M., Trunov N. N., Effekt Kazimira i ego prilozheniya, Energoatomizdat, M., 1990

[16] Spravochnik po spetsialnym funktsiyam, eds. M. Abramovits, I. Stigan, Nauka, M., 1979

[17] Olver F., Asimptotika i spetsialnye funktsii, Nauka, M., 1990 | MR | Zbl

[18] Korn G., Korn T., Spravochnik po matematike, Nauka, M., 1968 | MR