@article{TMF_1995_102_1_a1,
author = {L. A. Ferreira and D. I. Olive and M. V. Saveliev},
title = {Orthogonal decomposition of some affine {Lie} algebras in terms of their heisenberg subalgebras},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {17--31},
year = {1995},
volume = {102},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TMF_1995_102_1_a1/}
}
TY - JOUR AU - L. A. Ferreira AU - D. I. Olive AU - M. V. Saveliev TI - Orthogonal decomposition of some affine Lie algebras in terms of their heisenberg subalgebras JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1995 SP - 17 EP - 31 VL - 102 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_1995_102_1_a1/ LA - en ID - TMF_1995_102_1_a1 ER -
%0 Journal Article %A L. A. Ferreira %A D. I. Olive %A M. V. Saveliev %T Orthogonal decomposition of some affine Lie algebras in terms of their heisenberg subalgebras %J Teoretičeskaâ i matematičeskaâ fizika %D 1995 %P 17-31 %V 102 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_1995_102_1_a1/ %G en %F TMF_1995_102_1_a1
L. A. Ferreira; D. I. Olive; M. V. Saveliev. Orthogonal decomposition of some affine Lie algebras in terms of their heisenberg subalgebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 102 (1995) no. 1, pp. 17-31. http://geodesic.mathdoc.fr/item/TMF_1995_102_1_a1/
[1] Soviet. Math. Dokl., 24 (1981), 292 | MR | Zbl
[2] Kostrikin A. I., Kostrikin I. A., Ufnarovskii V. A., Proc. Steklov Inst. Math., 4, 1983, 113–129 | MR
[3] Soviet. Math. Dokl., 25 (1982), 23–27 | MR | Zbl
[4] Kac V. G., Peterson D. H., “112 constructions of the basic representation of the loop group of $E_8$”, Symposium on anomalies, geometry and topology (Singapore, 1985), eds. W. A. Bardeen and A. R. White, World Scientific, 276–298 | MR
[5] Patera J., Zassenhaus H., J. Math. Phys., 29:3 (1988), 665–673 | DOI | MR | Zbl
[6] Fairlie D. B., Fletcher P., Zachos C. K., J. Math. Phys., 31 (1990), 1088–1094 | DOI | MR | Zbl
[7] Kac V. G., Kazhdan D. A., Lepowsky J., Wilson R. L., Adv. in Math., 42 (1981), 83–112 | DOI | MR | Zbl
[8] Kac V. G., Infinite Dimensional Lie Algebras, Cambridge University Press, 1990 | MR
[9] Kostant B., Amer. J. Math., 81 (1959), 973–1032 | DOI | MR | Zbl
[10] Goddard P., Nahm W., Olive D., Ruegg H., Schwimmer A., Comm. Math. Phys., 112 (1987), 385–408 ; Ferreira L. A., Gomes J. F., Zimerman A. H., Phys. Lett. B, 214 (1988), 367–370 ; Ferreira L. A., Gomes J. F., Teotônio Sobrinho P., Zimerman A. H., J. Physics A, 25 (1992), 5071–5088 ; Phys. Lett. B, 234 (1990), 315–320 ; Corrigan E., Hollowood T., Phys. Lett. B, 203 (1988), 47–51 ; Commun. Math. Phys., 122 (1989), 393–410 ; Gunaydin M., Hyun J., Phys. Lett. B, 209 (1988), 498–502 | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | MR
[11] Olive D. I., Turok N., Underwood J. W. R., Nucl. Phys. B, 401 (1993), 663–697 | DOI | MR
[12] Olive D. I., Saveliev M. V., Underwood J. W. R., Phys. Lett. B, 311 (1993), 117–122 | DOI | MR | Zbl
[13] Leznov A. N., Saveliev M. V., Group Theoretical Methods for Integration of Nonlinear Dynamical Systems, Progress in Physics, 15, Birkhaüser-Verlag, Basel, 1992 | MR | Zbl