Schem (in?)dependence in perturbative lagrangian quantum field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 102 (1995) no. 1, pp. 3-16
Cet article a éte moissonné depuis la source Math-Net.Ru
A problem of renormalization – schem ambignity in perturbation quantum field theory is investigated. A procedure is described that makes it possible to express uniquely all observable quantities in terms of a set base observables. Remormalization group equations for the base observables are constracted. The case of mass theory is treated.
@article{TMF_1995_102_1_a0,
author = {D. A. Slavnov},
title = {Schem (in?)dependence in perturbative lagrangian quantum field theory},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--16},
year = {1995},
volume = {102},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1995_102_1_a0/}
}
D. A. Slavnov. Schem (in?)dependence in perturbative lagrangian quantum field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 102 (1995) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/TMF_1995_102_1_a0/
[1] Khepp K., Teoriya perenormirovok, Nauka, M., 1974 | MR
[2] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1984 | MR
[3] Slavnov D. A., Vestnik MGU. Ser. 3. Fizika. Astronomiya, 33:1 (1992), 15–19
[4] Grunberg G., Phys. Rev. D, 29:10 (1984), 2315–2338 | DOI
[5] Dhar A., Gupta V., Phys. Rev. D, 29 (1984), 2822–2827 | DOI
[6] Chyla J., Phys. Rev. D, 31:10 (1985), 2690–2692 | DOI
[7] Weinberg S., Phys. Rev., 118:4 (1960), 838–849 | DOI | MR | Zbl
[8] Fink J. P., J. Math. Phys., 9:9 (1968), 1389–1400 | DOI | MR | Zbl
[9] Slavnov D. A., TMF, 17:2 (1973), 169–177 | MR