Boussinesq–type system of equations in the Bénard–Marangoni system
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 419-427 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A system of coupled evolution equations for the bulk velocity and the surface displacement, is found as governing the long wavelenght perturbations in a Bénard-Marangoni system. This system of equations, involving nonlinearity, dispersion and dissipation, is a generalization of the usual Boussinesq system.
@article{TMF_1994_99_3_a9,
     author = {R. A. Kraenkel and S. M. Kurcbart and J. G. Pereira and M. A. Manna},
     title = {Boussinesq{\textendash}type system of equations in the {B\'enard{\textendash}Marangoni} system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {419--427},
     year = {1994},
     volume = {99},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a9/}
}
TY  - JOUR
AU  - R. A. Kraenkel
AU  - S. M. Kurcbart
AU  - J. G. Pereira
AU  - M. A. Manna
TI  - Boussinesq–type system of equations in the Bénard–Marangoni system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 419
EP  - 427
VL  - 99
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a9/
LA  - ru
ID  - TMF_1994_99_3_a9
ER  - 
%0 Journal Article
%A R. A. Kraenkel
%A S. M. Kurcbart
%A J. G. Pereira
%A M. A. Manna
%T Boussinesq–type system of equations in the Bénard–Marangoni system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 419-427
%V 99
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a9/
%G ru
%F TMF_1994_99_3_a9
R. A. Kraenkel; S. M. Kurcbart; J. G. Pereira; M. A. Manna. Boussinesq–type system of equations in the Bénard–Marangoni system. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 419-427. http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a9/

[1] R. D. Benguria, M. C. Depassier, Phys. Fluids A, 1 (1989), 1123 | DOI | Zbl

[2] C. M. Alfaro, M. C. Depassier, Phys. Rev. Lett., 62 (1989), 2597 | DOI

[3] S. M. Kurcbart, M. A. Manna, J. G. Pereira, A. N. Garazo, Phys. Lett. A, 148 (1990), 53 | DOI | MR

[4] A. N. Garazo, M. G. Velarde, Phys. Fluids A, 3 (1991), 2295 | DOI | Zbl

[5] R. A. Kraenkel, J. G. Pereira, M. A. Manna, Phys. Rev. A, 46 (1992), 4786 | DOI

[6] R. A. Kraenkel, J. G. Pereira, M. A. Manna, Physica Scripta, 45 (1992), 289 | DOI | MR | Zbl

[7] R. A. Kraenkel, S. M. Kurcbart, J. G. Pereira, M. A. Manna, Phys. Lett. A, 169 (1992), 259 | DOI

[8] R. A. Kraenkel, J. G. Pereira, M. A. Manna, Phys. Rev. A, 45 (1992), 838 | DOI | MR

[9] T. Taniuti, Suppl. Prog. Theor. Phys., 55 (1974), 1 | DOI

[10] G. B. Whitham, Linear and Nonlinear Waves, Wiley, New York, 1974 | MR | Zbl

[11] J. V. Wehausen, E. V. Laitone, Encyclopaedia of Physics, vol. 9, ed. S. Flugge, Springer, Berlin, 1960 | MR

[12] G. G. Stokes, Trans. Cambridge Philos. Soc., 8 (1845), 287

[13] L. F. J. Broer, Appl. Sci. Res., 31 (1975), 377 | DOI | MR | Zbl

[14] D. J. Kaup, Prog. Theor. Phys., 54 (1975), 396 | DOI | MR | Zbl

[15] R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, H. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, London, 1982 | MR | Zbl

[16] E. A. Novikov, Phys. Lett. A, 123 (1987), 287 | DOI | MR