$q$-Discretization of the two-dimensional Toda equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 390-398 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

$q$-Discrete versions of the two-dimensional Toda molecule equation and the two-dimensional Toda lattice equation are proposed through the direct method. Bäcklund transformation and Lax pair of the former are obtained. Moreover, reduction to the $q$-discrete cylindrical Toda equations is also discussed.
@article{TMF_1994_99_3_a5,
     author = {K. Kajiwara and Ya. Ohta and J. Satsuma},
     title = {$q${-Discretization} of the two-dimensional {Toda} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {390--398},
     year = {1994},
     volume = {99},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a5/}
}
TY  - JOUR
AU  - K. Kajiwara
AU  - Ya. Ohta
AU  - J. Satsuma
TI  - $q$-Discretization of the two-dimensional Toda equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 390
EP  - 398
VL  - 99
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a5/
LA  - ru
ID  - TMF_1994_99_3_a5
ER  - 
%0 Journal Article
%A K. Kajiwara
%A Ya. Ohta
%A J. Satsuma
%T $q$-Discretization of the two-dimensional Toda equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 390-398
%V 99
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a5/
%G ru
%F TMF_1994_99_3_a5
K. Kajiwara; Ya. Ohta; J. Satsuma. $q$-Discretization of the two-dimensional Toda equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 390-398. http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a5/

[1] V. G. Drinfel'd, Sov. Math. Dokl., 32 (1985), 254

[2] M. Jimbo, Lett. Math. Phys., 10 (1985), 63 | DOI | MR | Zbl

[3] H. Exton, $q$-Hypergeometric Functions and Applications, Ellis Horwood, Chichester, 1983 | MR | Zbl

[4] T. H. Koornwinder, Orthogonal Polynomials, ed. P. Nevai, Kluwer Academic, Dordrecht, 1990, 257 | DOI | MR

[5] T. Masuda, K. Mimachi, Y. Nakagami, M. Noumi, K. Ueno, J. Func. Anal., 99 (1991), 357 | DOI | MR | Zbl

[6] A. Nakamura, Progr. Theoret. Phys. Suppl., 94 (1988), 195–209 | DOI | MR

[7] K. Okamoto, Algebraic Analysis, Academic, Boston, 1988, 647 | DOI | MR

[8] R. Hirota, J. Phys. Soc. Jpn., 43 (1977), 1424 | DOI | MR | Zbl

[9] R. Hirota, S. Tsujimoto, T. Imai, RIMS Kokyuroku, 822 (1993), 144, Kyoto Univ. | MR

[10] R. Hirota, A. Nakamura, J. Phys. Soc. Jpn., 56 (1987), 3055 | DOI | MR

[11] K. Kajiwara, Y. Ohta, J. Satsuma, Phys. Lett. A, 180 (1993), 249 | DOI | MR

[12] A. Nakamura, J. Phys. Soc. Jpn., 52 (1983), 380 | DOI | MR

[13] M. A. Olshanetski, talk delivered at NEEDS '93

[14] A. Mironov, A. Morozov, Luc Vinet, On a $c$-number quantum $\tau$-function, preprint hep-th/9312213 | MR

[15] F. W. Nijhoff, On a $q$-Deformation of the Discrete Painlevé I equation and $q$-orthogonal Polynomials, preprint | MR

[16] K. Okamoto, Ann. Mat., 1986, 337 ; Japan J. Math., 13 (1987), 47 ; Math. Ann., 275 (1986), 221 ; Funkcialaj Ekvacioj, 30 (1987), 305 | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl

[17] A. Ramani, B. Grammaticos, J. Hietarinta, Phys. Rev. Lett., 67 (1991), 1829 | DOI | MR | Zbl