NLS-tupe equations in 2+1 dimensions: New type of solutions and non-isospectral problems
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 382-389 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Integrable systems of NLS type in 2+1 dimensions are studied in three folds: their special solutions by Lie point symmetries, ‘breaking’-solutions by the ISM, as well as the non-isospectral problems.
@article{TMF_1994_99_3_a4,
     author = {Zh. Jiang and X. He},
     title = {NLS-tupe equations in~2+1 dimensions: {New} type of solutions and non-isospectral problems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {382--389},
     year = {1994},
     volume = {99},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a4/}
}
TY  - JOUR
AU  - Zh. Jiang
AU  - X. He
TI  - NLS-tupe equations in 2+1 dimensions: New type of solutions and non-isospectral problems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 382
EP  - 389
VL  - 99
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a4/
LA  - ru
ID  - TMF_1994_99_3_a4
ER  - 
%0 Journal Article
%A Zh. Jiang
%A X. He
%T NLS-tupe equations in 2+1 dimensions: New type of solutions and non-isospectral problems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 382-389
%V 99
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a4/
%G ru
%F TMF_1994_99_3_a4
Zh. Jiang; X. He. NLS-tupe equations in 2+1 dimensions: New type of solutions and non-isospectral problems. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 382-389. http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a4/

[1] Fokas A. S., Santini P. M., Physica D, 44 (1990), 99 | DOI | MR

[2] Boiti M., Leon J. J., Pempinelli F., Phys. Lett. A, 141 (1989), 101 | DOI | MR

[3] Bullough R. K., Caudrey P. J.(eds.), Solitons, Springer, Berlin, 1980 | MR | Zbl

[4] Strachan I. A. B, J. Math. Phys., 33 (1992), 2477 | DOI | MR | Zbl

[5] Jiang Z., Bullough R. K., The integrability of 3WI type and some other $2+1$ dimensional equations, in preparation

[6] Jiang Z., He X., Some special aspects of similarity solutions for PDEs, in preparation

[7] Jiang Z., Inv. Prob., 9 (1993), L1 | DOI | MR | Zbl

[8] Winternitz P., Private communication

[9] Bluman G. W., Kumei S., Symmetries and differential equations, Springer, New York, 1989 | MR | Zbl

[10] Ablowitz M. J., Segur H., Solitons and the inverse scattering transform, SIAM, Philadelphia, 1981 | MR | Zbl

[11] Li Y. S., Teor. Mat. Fiz., 99:3 (1994)

[12] Strachan I. A. B., Inv. Prob., 8 (1992), L21 | DOI | MR | Zbl

[13] Chen H. H., Liu C. S., Phys. Rev. Lett., 27 (1976), 693 | DOI | MR

[14] Ma W., J. Math. Phys., 33 (1992), 2464 | DOI | MR | Zbl

[15] Cheng Y., Li Y., Bullough R. K., J. Phys. A, 21 (1988), L443 | DOI | MR | Zbl

[16] Fokas A. S., Ablowitz M. J., Stud. Appl. Math., 69 (1983), 211 | DOI | MR | Zbl

[17] Jiang Z., Bullough R. K., J. Phys. A, 20 (1987), L429 | DOI | MR | Zbl

[18] He X., Jiang Z., “Hopf Bifurcation of a Class of PDEs”, Miniconference on Analysis and Applications (Brisbane, 1993), Proc. Centre Math. Appl. Austral. Nat. Univ., 33, Austral. Nat. Univ., Canberra, 1994, 89–97 | MR | Zbl

[19] He X., Hopf bifurcation in Banach spaces, preprint UNE, 1993