@article{TMF_1994_99_3_a25,
author = {G. Tondo},
title = {A connection between the {Henon{\textendash}Heiles} system and the {Garnier} system},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {552--559},
year = {1994},
volume = {99},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a25/}
}
G. Tondo. A connection between the Henon–Heiles system and the Garnier system. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 552-559. http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a25/
[1] A. P. Fordy, “The Henon–Heiles system revisited”, Physica D, 52 (1991), 204–210 | DOI | MR | Zbl
[2] C. W. Cao, Henan Science, 5 (1987), 1 | MR | Zbl
[3] M. Antonowicz, S. Rauch-Wojciechowski, “How to construct finite dimensional bi-Hamiltonian systems from soliton equations: Jacobi integrable potentials”, J. Math. Phys., 33 (1992), 2115–2125 | DOI | MR | Zbl
[4] L. A. Dickey, Soliton Equations and Hamiltonian Systems, World Scientific, Singapore, 1991 | MR | Zbl
[5] M. Antonowicz, S. Rauch-Wojciechowski, “Bi-Hamiltonian Formulation of the Henon–Heiles System and its Multidimensional Extensions”, Phys. Lett. A, 163 (1992), 167–172 | DOI | MR
[6] S. Wojciechowski, “Integrability of One Particle in a Perturbed Central Quartic Potential”, Physica Scripta, 31 (1985), 433–438 | DOI | MR | Zbl
[7] P. Casati, F. Magri, M. Pedroni, “Bihamiltonian Manifolds and $\tau$-function”, Contemporary Mathematics, v. 132, eds. M. J. Gotay et al., American Mathematical Society, Providence, 1992, 213–234 | DOI | MR
[8] S. Rauch-Wojciechowski, “Newton representation for stationary flows of the KdV hierarchy”, Phys. Lett. A, 170 (1991), 91–94 | DOI | MR