A connection between the Henon–Heiles system and the Garnier system
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 552-559 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A remarkable map between a generalized Henon–Heiles system and the Garnier system is obtained by means of a detailed comparison between two finite–dimensional reduction methods for soliton equations: the stationary flows and the restricted flows. The role of the Gelfand–Dickey polynomials and of the KdV Poisson pencil in this construction is emphasized.
@article{TMF_1994_99_3_a25,
     author = {G. Tondo},
     title = {A connection between the {Henon{\textendash}Heiles} system and the {Garnier} system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {552--559},
     year = {1994},
     volume = {99},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a25/}
}
TY  - JOUR
AU  - G. Tondo
TI  - A connection between the Henon–Heiles system and the Garnier system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 552
EP  - 559
VL  - 99
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a25/
LA  - ru
ID  - TMF_1994_99_3_a25
ER  - 
%0 Journal Article
%A G. Tondo
%T A connection between the Henon–Heiles system and the Garnier system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 552-559
%V 99
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a25/
%G ru
%F TMF_1994_99_3_a25
G. Tondo. A connection between the Henon–Heiles system and the Garnier system. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 552-559. http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a25/

[1] A. P. Fordy, “The Henon–Heiles system revisited”, Physica D, 52 (1991), 204–210 | DOI | MR | Zbl

[2] C. W. Cao, Henan Science, 5 (1987), 1 | MR | Zbl

[3] M. Antonowicz, S. Rauch-Wojciechowski, “How to construct finite dimensional bi-Hamiltonian systems from soliton equations: Jacobi integrable potentials”, J. Math. Phys., 33 (1992), 2115–2125 | DOI | MR | Zbl

[4] L. A. Dickey, Soliton Equations and Hamiltonian Systems, World Scientific, Singapore, 1991 | MR | Zbl

[5] M. Antonowicz, S. Rauch-Wojciechowski, “Bi-Hamiltonian Formulation of the Henon–Heiles System and its Multidimensional Extensions”, Phys. Lett. A, 163 (1992), 167–172 | DOI | MR

[6] S. Wojciechowski, “Integrability of One Particle in a Perturbed Central Quartic Potential”, Physica Scripta, 31 (1985), 433–438 | DOI | MR | Zbl

[7] P. Casati, F. Magri, M. Pedroni, “Bihamiltonian Manifolds and $\tau$-function”, Contemporary Mathematics, v. 132, eds. M. J. Gotay et al., American Mathematical Society, Providence, 1992, 213–234 | DOI | MR

[8] S. Rauch-Wojciechowski, “Newton representation for stationary flows of the KdV hierarchy”, Phys. Lett. A, 170 (1991), 91–94 | DOI | MR