@article{TMF_1994_99_3_a23,
author = {A. B. Shabat},
title = {Discrete symmetries and solitons},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {537--544},
year = {1994},
volume = {99},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a23/}
}
A. B. Shabat. Discrete symmetries and solitons. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 537-544. http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a23/
[1] G. Darboux, Théorie generale des surfaces, v. II, Chelsea, New York, 1972 | MR | Zbl
[2] A. N. Leznov, A. B. Shabat, R. I. Yamilov, “Canonical transformations generated by shifts in nonlinear lattices”, Phys. Lett. A, 174 (1993) | DOI | MR
[3] J. Liouville, “Note sur l'integration des equations de la dynamice”, J. Math. Pures Appl., 20 (1855), 137–138
[4] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nonlinear equations of KdV type, finite-zone linear operators and abelian varieties”, Usp. Mat. Nauk, 31:1 (1976), 55–136 | MR | Zbl
[5] A. P. Veselov, A. B. Shabat, “Dressing chain and the spectral theory of the Schrödinger operator”, Funkts. Anal. Prilozhen., 27:2 (1993), 1–21 | MR | Zbl
[6] V. E. Adler, “Recuttings of polygons”, Funkts. Anal. Prilozhen., 27:2 (1993), 79–82 | MR | Zbl
[7] J. L. Burchnall, T. W. Chaundy, “Commutative ordinary differential operators”, Proc. London Soc.{, ser. 2}, 21 (1923), 420–440 | DOI | MR | Zbl
[8] A. B. Shabat, “The infinite-dimensional dressing dynamical system”, Inverse Problems, 6 (1992), 303–308 | DOI | MR
[9] A. B. Shabat, R. I. Yamilov, “Symmetries of the nonlinear chains”, Leningrad Math. J., 2:2 (1991), 377–400 | MR | Zbl
[10] J. Weiss, “Periodic fixed points of Bäcklund transformations and the KdV equation”, J. Math. Phys., 27(11) (1986), 2647–2656 ; 28(9) (1987), 2025–2039 | DOI | MR | Zbl | DOI | MR | Zbl
[11] L. Infeld, T. Hull, “The factorization method”, Revs. Mod. Phys., 23 (1951), 21–68 | DOI | MR | Zbl
[12] A. Degasperis, A. Shabat, “Construction of reflectionless potentials with ifinite discrete spectrum”, Teoret. Mat. Fiz., 100:2 (1994), 230–247 | MR | Zbl