Painlevé expansion and exact solution for nonlinear evolution equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 528-536 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the truncated Painlevé expansion provides a systematic procedure to obtain exact as well as special solutions for nonlinear evolution equations. Several examples of nonintegrable equations both infinite and finite dimensions are illustrated.
@article{TMF_1994_99_3_a22,
     author = {R. Sahadevan},
     title = {Painlev\'e expansion and exact solution for nonlinear evolution equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {528--536},
     year = {1994},
     volume = {99},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a22/}
}
TY  - JOUR
AU  - R. Sahadevan
TI  - Painlevé expansion and exact solution for nonlinear evolution equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 528
EP  - 536
VL  - 99
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a22/
LA  - ru
ID  - TMF_1994_99_3_a22
ER  - 
%0 Journal Article
%A R. Sahadevan
%T Painlevé expansion and exact solution for nonlinear evolution equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 528-536
%V 99
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a22/
%G ru
%F TMF_1994_99_3_a22
R. Sahadevan. Painlevé expansion and exact solution for nonlinear evolution equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 528-536. http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a22/

[1] E. L. Ince, Ordinary Differential Equations, Dover, New York, 1956 | MR

[2] E. Hille, Ordinary Differential Equations in the Complex Domain, Wiley, New York, 1976 | MR | Zbl

[3] M. J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981 | MR | Zbl

[4] M. J. Ablowitz, A. Ramani, H. Segur, J. Math. Phys., 21 (1980), 715 | DOI | MR | Zbl

[5] J. Weiss, M. Tabor, G. Carnevale, J. Math. Phys., 24 (1983), 522 | DOI | MR | Zbl

[6] A. Ramani, B. Grammaticos, T. C. Bountis, Phys. Rep., 180 (1989), 159 | DOI | MR

[7] M. D. Kruskal, P. A. Clarkson, Stud. Appl. Math., 86 (1992), 87 | DOI | MR | Zbl

[8] M. Lakshmanan, R. Sahadevan, Phys. Rep., 224 (1993), 1 | DOI | MR

[9] J. Weiss, J. Math. Phys., 24 (1983), 1405 | DOI | MR | Zbl

[10] J. D. Gibbon, P. Radmore, M. Tabor, D. Wood, Stud. Appl. Math., 72 (1955), 39 | DOI | MR

[11] J. D. Gibbon, A. C. Newell, M. Tabor, Y. B. Zeng, Nonlinearity, 1 (1988), 481 | DOI | MR | Zbl

[12] R. Sahadevan, K. M. Tamizhmani, M. Lakshmanan, J. Phys. A, 19 (1986), 1783 | DOI | MR | Zbl

[13] F. Cariello, M. Tabor, Physica D, 39 (1989), 77 | DOI | MR | Zbl

[14] K. Nozaki, J. Phys. Soc. Jpn., 56 (1987), 3052 | DOI | MR

[15] J. Weiss, Partially Integrable Evolution Equations in Physics, NATO ASI series C: Math. Phys. Sci., 310, eds. R. Conte, N. Boccara, 1990, 375–411 | MR | Zbl

[16] E. N. Lorenz, J. atmos. sci., 20 (1963), 130 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[17] R. A. Fisher, Ann. Engenics, 7 (1937), 355 | DOI | Zbl

[18] W. Hereman, Partially Integrable Evolution Equations in Physics, NATO ASI Series C: Maths. Phys. Sci., 310, eds. R. Conte, N. Boccara, 1990, 585–586 | MR

[19] M. Lakshmanan, P. Kaliappan, J. Math. Phys., 24 (1983), 795 | DOI | MR | Zbl

[20] J. Satsuma, J. Phys. Soc. Jpn., 56 (1987), 1947 | DOI | MR

[21] E. V. Krishnan, J. Phys. Soc. Jpn., 62 (1993), 1076 | DOI | MR | Zbl

[22] J. Weiss, Phys. Lett. A, 102 (1984), 329 | DOI | MR

[23] M. Tabor, J. Weiss, Phys. Rev. A, 24 (1981), 4 | DOI