Integrable hierarchies: Painlevé indices and compatibility conditions
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 509-516 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the application of the Weiss–Tabor–Carnevale (WTC) Painlevé test to hierarchies of completely integrable evolution equations. A method of constructing the Painlevé index polynomial for such hierarchies is illustrated. For Burgers' hierarchy we are able to show that all WTC compatibility conditions are satisfied. This allows a simple construction of the Painlevé-Bäcklund transformation obtained from truncation of the principal Painlevé expansion.
@article{TMF_1994_99_3_a20,
     author = {A. Pickering},
     title = {Integrable hierarchies: {Painlev\'e} indices and compatibility conditions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {509--516},
     year = {1994},
     volume = {99},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a20/}
}
TY  - JOUR
AU  - A. Pickering
TI  - Integrable hierarchies: Painlevé indices and compatibility conditions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 509
EP  - 516
VL  - 99
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a20/
LA  - ru
ID  - TMF_1994_99_3_a20
ER  - 
%0 Journal Article
%A A. Pickering
%T Integrable hierarchies: Painlevé indices and compatibility conditions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 509-516
%V 99
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a20/
%G ru
%F TMF_1994_99_3_a20
A. Pickering. Integrable hierarchies: Painlevé indices and compatibility conditions. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 509-516. http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a20/

[1] P. Painlevé, Bull. Soc. Math. France, 28 (1900), 201 | DOI | MR | Zbl

[2] P. Painlevé, Acta Math., 25 (1902), 1 | DOI | MR

[3] W. F. Osgood, “Topics in the Theory of Functions of Several Complex Variables”, The Madison Colloquium, 1913, part II, American Mathematical Society, Rhode Island, 1914 | MR | Zbl

[4] R. S. Ward, Phys. Lett. A, 102 (1984), 279 | DOI | MR

[5] J. Weiss, M. Tabor, G. Carnevale, J. Math. Phys., 24 (1983), 522 | DOI | MR | Zbl

[6] A. P. Fordy, A. Pickering, Phys. Lett. A, 160 (1991), 347 | DOI | MR

[7] R. Conte, A. P. Fordy, A. Pickering, Physica D, 69 (1993), 33 | DOI | MR | Zbl

[8] A. C. Newell, M. Tabor, Y. B. Zeng, Physica D, 29 (1987), 1 | DOI | MR | Zbl

[9] P. J. Olver, J. Math. Phys., 18 (1977), 1212 | DOI | MR | Zbl

[10] B. Fuchssteiner, Nonlinear Anal. Theory Meth. Appl., 3 (1979), 849 | DOI | MR | Zbl

[11] W. Strampp, Prog. Theor. Phys., 80 (1988), 384 | DOI | MR

[12] A. Pickering, J. Math. Phys., 35 (1994), 821 | DOI | MR | Zbl

[13] A. Pickering, “Integrable hierarchies: Painlevé indices and compatibility conditions”, Teoret. Mat. Fiz., 99:3 (1994), 509–516 | MR | Zbl

[14] D. J. Kaup, Stud. Appl. Math., 62 (1980), 189 | DOI | MR | Zbl

[15] A. P. Fordy, J. Gibbons, Phys. Lett. A, 75 (1980), 325 | DOI | MR

[16] H. Yoshida, Cel. Mech., 31 (1983), 363 | DOI | MR | Zbl

[17] A. P. Fordy, A. Pickering, Chaotic Dynamics: Theory and Practice, ed. T. Bountis, Plenum, New York, 1992 | MR

[18] A. Pickering, Ph. D. thesis, University of Leeds, 1992

[19] D. V. Čhoodnovs'k\u i, G. V. Choodnovsky, “Pole expansions of nonlinear partial differential equations”, Nuovo Cimento B (11), 40:2 (1977), 339–353 | DOI | MR

[20] A. S. Fokas, Ph. D. thesis, California Institute of Technology, 1979