A new-type of soliton behavior of the Davey–Stewartson equations in a plasma system
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 487-498 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Davey–Stewartson equations are derived in a plasma system by the reductive perturbation method. Modulational instability of a plane wave is discussed including a finite ion temperature effect. Certain particular solutions of the equations are also obtained by means of a linearization technique. One of them shows “reconnection” of solitons. We show that this reconnectionsolution correspond to the resonant type of usual soliton solutions.
@article{TMF_1994_99_3_a17,
     author = {K. Nishinari and K. Abe and J. Satsuma},
     title = {A~new-type of soliton behavior of the {Davey{\textendash}Stewartson} equations in a~plasma system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {487--498},
     year = {1994},
     volume = {99},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a17/}
}
TY  - JOUR
AU  - K. Nishinari
AU  - K. Abe
AU  - J. Satsuma
TI  - A new-type of soliton behavior of the Davey–Stewartson equations in a plasma system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 487
EP  - 498
VL  - 99
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a17/
LA  - ru
ID  - TMF_1994_99_3_a17
ER  - 
%0 Journal Article
%A K. Nishinari
%A K. Abe
%A J. Satsuma
%T A new-type of soliton behavior of the Davey–Stewartson equations in a plasma system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 487-498
%V 99
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a17/
%G ru
%F TMF_1994_99_3_a17
K. Nishinari; K. Abe; J. Satsuma. A new-type of soliton behavior of the Davey–Stewartson equations in a plasma system. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 487-498. http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a17/

[1] F. Kako, N. Yajima, J. Phys. Soc. Jpn., 49 (1980), 206 ; 51 (1982), 311 | DOI | MR | DOI | MR

[2] A. S. Fokas, P. M. Santini, Phys. Rev. Lett., 63 (1989), 1329 ; J. Hietarinta, R. Horota, Phys. Lett. A, 145 (1990), 237 | DOI | MR | DOI | MR

[3] A. S. Fokas, M. J. Ablowitz, J. Math. Phys., 25 (1984), 2494 | DOI | MR | Zbl

[4] A. Davey, K. Stewartson, Proc. Roy Soc. Lond. A, 338 (1974), 101 | DOI | MR | Zbl

[5] B. B. Kadomtsev, V. I. Petviashivili, Soviet Phys. Doklady, 15 (1970), 539 | Zbl

[6] K. Nishinari, K. Abe, J. Satsuma, J. Phys. Soc. Jpn., 62 (1993), 2021 | DOI

[7] A. Jeffrey, T. Kawahara, Astmptotic Method in Nonlinear Wave Theory, Pitman, 1982 | MR

[8] J. Satsuma, M. J. Ablowitz, J. Math. Phys., 20 (1979), 1496 | DOI | MR | Zbl

[9] T. Sato, R. Horiuchi, K. Kusano, Phys. Fluids B, 1 (1989), 255 | DOI

[10] G. L. Lamb Jr, Elements of Soliton Theory, John Wiley and Sons. Inc., New York, 1980 | MR | Zbl