Quantization of planar ferromagnets in the Chern–Simons representation
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 450-461 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We formulate the two-dimensional planar classical continuous Heisenberg spin model as a constrained Chern–Simons gauged nonlinear Schrödinger system. Several physical consequences in the framework of the anyon field theory are discussed. We study the hamiltonian structure of the model, which is quantized using the gauge invariant approach. A preliminary study of the quantum states is presented.
@article{TMF_1994_99_3_a13,
     author = {L. Martina and O. K. Pashaev and G. Soliani},
     title = {Quantization of planar ferromagnets in the {Chern{\textendash}Simons} representation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {450--461},
     year = {1994},
     volume = {99},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a13/}
}
TY  - JOUR
AU  - L. Martina
AU  - O. K. Pashaev
AU  - G. Soliani
TI  - Quantization of planar ferromagnets in the Chern–Simons representation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 450
EP  - 461
VL  - 99
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a13/
LA  - ru
ID  - TMF_1994_99_3_a13
ER  - 
%0 Journal Article
%A L. Martina
%A O. K. Pashaev
%A G. Soliani
%T Quantization of planar ferromagnets in the Chern–Simons representation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 450-461
%V 99
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a13/
%G ru
%F TMF_1994_99_3_a13
L. Martina; O. K. Pashaev; G. Soliani. Quantization of planar ferromagnets in the Chern–Simons representation. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 450-461. http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a13/

[1] A. Zee, Prog. Theor. Phys. Suppl., 107 (1992), 77 | DOI | MR

[2] R. Jackiw, S-Y. Pi, Phys. Rev. Lett., 64 (1990), 2969 | DOI | MR | Zbl

[3] R. E. Prange, S. M. Girvin, The quantum Hall Effect, Springer-Verlag, New York, 1990 | MR

[4] S. C. Zhang, T. H. Hansson, S. Kivelson, Phys. Rev. Lett., 62 (1989), 82 | DOI

[5] Z. F. Ezawa, M. Hotta, A. Iwazaki, Progr. Theor. Phys. Suppl., 107 (1992), 185 | DOI | MR

[6] L. Martina, O. K. Pashaev, G. Soliani, Mod. Phys. Lett. A, 8 (1993), 3241 | DOI | MR | Zbl

[7] L. Martina, O. K. Pashaev, G. Soliani, Phys. Rev. B, 48 (1993), 15787 | DOI

[8] T. H. O'Dell, Ferromagnetodynamics, the dynamics of magnetic bubbles, domains and domain wall, Wiley, New York, 1981

[9] N. Papanicolau, T. N. Tomaras, Nucl. Phys. B, 360 (1991), 425 | DOI | MR

[10] V. G. Makhankov, O. K. Pashaev, “Integrable Pseudospin Models in Condensed Matter”, Sov. Sci. Rev., Math. Phys., 9 (1992), 1

[11] L. Faddeev, R. Jackiw, Phys. Rev. Lett., 60 (1988), 692 | DOI | MR

[12] P. A. M. Dirac, Lectures on Quantum Mechanics, Yeshiva University, New York, 1964 | MR

[13] P. de Sousa Gerbert, Phys. Rev. D, 42 (1990), 543 | DOI

[14] T. Matsuyama, Phys. Lett. B, 228 (1989), 99 | DOI | MR

[15] C. G. Han, Phys. Rev. D, 47 (1993), 5521 | DOI | MR

[16] R. Banerjee, A. Chatterjee, V. V. Sreedhar, Ann. Phys., 222 (1993), 254 | DOI | MR | Zbl

[17] M. Chaichian, N. F. Nelipa, Introduction to gauge field theory, Springer-Verlag, Berlin, 1984 | MR

[18] D. Boyanovsky, E. T. Newman, C. Rovelli, Phys. Rev. D, 45 (1992), 1210 | DOI | MR

[19] N. K. Pak, R. Percacci, J. Math. Phys., 30 (1989), 2951 ; N. K. Pak, Progr. Theor. Phys., 88 (1992), 585 | DOI | MR | Zbl | DOI