Two topics of the integrable soliton equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 441-449 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TMF_1994_99_3_a12,
     author = {Y.-sh. Li},
     title = {Two topics of the integrable soliton equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {441--449},
     year = {1994},
     volume = {99},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a12/}
}
TY  - JOUR
AU  - Y.-sh. Li
TI  - Two topics of the integrable soliton equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 441
EP  - 449
VL  - 99
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a12/
LA  - ru
ID  - TMF_1994_99_3_a12
ER  - 
%0 Journal Article
%A Y.-sh. Li
%T Two topics of the integrable soliton equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 441-449
%V 99
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a12/
%G ru
%F TMF_1994_99_3_a12
Y.-sh. Li. Two topics of the integrable soliton equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 441-449. http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a12/

[1] Li Yi-shen, Remarks on the breaking solution equation

[2] Li Yi-shen, “The solution and algebraic properties of two breaking solution equation”, Proceeding of workshop on qualitative aspects and applications of nonlinear evolution equation, 1993 | MR

[3] Li Yi-shen, The solutions of the breaking solution equation, 1993

[4] Li Yi-shen, Zhang You-jin, “Symmetries of a $2+1$ dimensional breaking solution equation”, J. Phis. A

[5] Cheng Y. I., Li Yi-shen, Phys. Lett. A, 157 (1991), 22 ; J. Phys. A, 25 (1990), 419 | DOI | MR | DOI

[6] Cheng Yi., J. Math. Phys., 33 (1992), 3774 | DOI | MR | Zbl

[7] Zeng Yun-bo, Li Yi-shen, J. Math. Phys., 301 (1989), 1679 ; J. Phys. A, 1 (1990), L89 ; Phys.Lett. A, 1601 (1991), 541 ; “General scheme for higher-order decomposition of zero curvature equation associated with sl(2)”, to be published Advance of math | DOI | MR | DOI | DOI

[8] Zeng Yun-bo, Li Yi-shen, J. Math. Phys. A, 301 (1989), L273 ; The Lax reepersentation and Darboux transformation for decomposition of zero curvature equation, preprint, 1992 | MR

[9] F. Calogero, A. Degasperis, Nuovo Cimento B, 32 (1976), 1 ; 33 (1977), 54 | DOI | MR

[10] O. I. Bogovarlenski, YMH, 45 (1990), 17

[11] I. A. B. Strachan, Ivense problem, 8 (1992), L21 ; J. Math. Phys., 34 (1993), 243 | DOI | MR | Zbl | DOI | MR | Zbl

[12] R. S. Ward, J. Math. Phys., 29 (1988), 386 | DOI | MR | Zbl

[13] Zhou Zi-xiang, Construction of explicit solutions of modified principal chiral field in $1+2$ dimensions via Darboux transformation, preprint | MR

[14] R. S. Ward, Phil. Trans. A. Soc. Lond., 315 (1985), 451 | DOI | Zbl