Levi--Civita theory for irrotational water waves in a~one dimensional channel and the complex Korteweg--de~Vries equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 435-440
Voir la notice de l'article provenant de la source Math-Net.Ru
We review Levi–Civita theory that reduces the study of the irrotational flow in a one dimensional channel or the solution of a non-linear differential-functional partial differential equation for the velocity potential. We show how, by considering small perturbations in a shallow water channel, we can reduce the non-linear differential-functional equation to a complex Korteweg–de Vries equation that, for almost horizontal flow and for initial conditions independent from the vertical variable, reduces to the usual one.
@article{TMF_1994_99_3_a11,
author = {D. Levi},
title = {Levi--Civita theory for irrotational water waves in a~one dimensional channel and the complex {Korteweg--de~Vries} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {435--440},
publisher = {mathdoc},
volume = {99},
number = {3},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a11/}
}
TY - JOUR AU - D. Levi TI - Levi--Civita theory for irrotational water waves in a~one dimensional channel and the complex Korteweg--de~Vries equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1994 SP - 435 EP - 440 VL - 99 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a11/ LA - ru ID - TMF_1994_99_3_a11 ER -
%0 Journal Article %A D. Levi %T Levi--Civita theory for irrotational water waves in a~one dimensional channel and the complex Korteweg--de~Vries equation %J Teoretičeskaâ i matematičeskaâ fizika %D 1994 %P 435-440 %V 99 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a11/ %G ru %F TMF_1994_99_3_a11
D. Levi. Levi--Civita theory for irrotational water waves in a~one dimensional channel and the complex Korteweg--de~Vries equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 435-440. http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a11/