Classical integrable lattice models through quantum group related formalism
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 428-434
Voir la notice de l'article provenant de la source Math-Net.Ru
We effectively translate our earlier quantum constructions to the classical language and, using Yang–Baxterisation of the Faddeev–Reshetikhin–Takhtajan algebra, are able to construct the Lax operators and associated $r$-matrices of classical integrable models. Thus, new as well as known lattice systems of different classes are generated, including new types of collective integrable models and canonical models with nonstandard $r$ matrices.
@article{TMF_1994_99_3_a10,
author = {A. Kundu},
title = {Classical integrable lattice models through quantum group related formalism},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {428--434},
publisher = {mathdoc},
volume = {99},
number = {3},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a10/}
}
A. Kundu. Classical integrable lattice models through quantum group related formalism. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 428-434. http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a10/