Classical integrable lattice models through quantum group related formalism
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 428-434 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We effectively translate our earlier quantum constructions to the classical language and, using Yang–Baxterisation of the Faddeev–Reshetikhin–Takhtajan algebra, are able to construct the Lax operators and associated $r$-matrices of classical integrable models. Thus, new as well as known lattice systems of different classes are generated, including new types of collective integrable models and canonical models with nonstandard $r$ matrices.
@article{TMF_1994_99_3_a10,
     author = {A. Kundu},
     title = {Classical integrable lattice models through quantum group related formalism},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {428--434},
     year = {1994},
     volume = {99},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a10/}
}
TY  - JOUR
AU  - A. Kundu
TI  - Classical integrable lattice models through quantum group related formalism
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 428
EP  - 434
VL  - 99
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a10/
LA  - ru
ID  - TMF_1994_99_3_a10
ER  - 
%0 Journal Article
%A A. Kundu
%T Classical integrable lattice models through quantum group related formalism
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 428-434
%V 99
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a10/
%G ru
%F TMF_1994_99_3_a10
A. Kundu. Classical integrable lattice models through quantum group related formalism. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 428-434. http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a10/

[1] A. Kundu, B. Basumallick, Mod. Phys. Lett. A, 7 (1992), 61 ; Coloured FRT algebra and its Yang-Baxterisation leading to integrable models with nonadditive $R$-matrix, Saha Inst. Preprint, april 1993 | DOI | MR | Zbl

[2] N. Yu. Reshitikhin, L. A. Takhtajan, L. D. Faddeev, Algebra and Analysis, 1 (1989), 17

[3] M. J. Ablowitz, J. F. Ladik, Stud. Appl. Math., 55 (1976), 213 | DOI | MR | Zbl

[4] Yu. B. Suris, Phys. Lett. A, 145 (1990), 113 | DOI | MR

[5] I. Mirola, O. Ragnisco, T. G. Zhang, A novel hierarchy of integrable lattices, Rome Univ. Preprint No 976, 1993 | MR

[6] V. F. R. Jones, Int. J. Mod. Phys. B, 4 (1993), 701 | DOI | MR

[7] M. Jimbo, Lett. Math. Phys., 20 (1985), 331 ; V. G. Drinfeld, Proc. ICM, Berkeley, 1986, 798 | MR

[8] A. G. Izergin, V. E. Korepin, Nucl. Phys. B, 205 (1982), 401 | DOI | MR

[9] A. G. Izergin, V. E. Korepin, Sov. Phys. Dokl., 259 (1981), 76 ; V. O. Tarasov, L. A. Takhtajan, L. D. Faddeev, Teor. Mat. Fiz., 57 (1983), 163 | MR | Zbl | DOI | MR

[10] P. L. Christiansen, M. F. Jorgensen, V. B. Kuznetsov, Lett. Math. Phys., 29 (1993), 165 | DOI | MR | Zbl

[11] O. Ragnisco, A. Kundu, A simple lattice variant of NLS equation and its deformation with exact quantum solution, Saha Inst. Preprint SINP/TNP/92-15, 1992 | MR

[12] N. Reshetikhin, Lett. Math. Phys., 20 (1990), 331 | DOI | MR | Zbl

[13] A. Kundu, B. Basumallick, J. Math. Phys., 34 (1993), 1052 ; B. Basumallick, A. Kundu, Phys. Lett. B, 287 (1992), 149 | DOI | MR | Zbl | DOI | MR

[14] A. J. MacFarlane, J. Phys. A, 22 (1989), 4581 | DOI | MR | Zbl