@article{TMF_1994_99_3_a0,
author = {S. Bouquet},
title = {Completely integrable one-dimensional classical and relativistic time-dependent hamiltonians},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {355--363},
year = {1994},
volume = {99},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a0/}
}
S. Bouquet. Completely integrable one-dimensional classical and relativistic time-dependent hamiltonians. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 355-363. http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a0/
[1] H. R. Lewis, P. G. L. Leach, S. Bouquet, M. R. Feix, J. Math. Phys., 33 (1992), 591 | DOI | MR | Zbl
[2] H. R. Lewis, P. G. L. Leach, S. Bouquet, M. R. Feix, “Representation of time-dependent one-dimensional Hamiltonians in terms of their first integrals”, Nonlinear Evolution Equations and Dynamical Systems, eds. V. G. Makhankov, I. Puzynin, O. Pashaev, World Scientific, Singapore, 1993, 42 | MR
[3] E. Noether, Transp. Theory Stat. phys., 1 (1971), 186 | DOI | MR | Zbl
[4] W. Sarlet, F. Cantrijn, SIAM review, 23 (1983), 467 | DOI | MR
[5] P. J. Olver, Applications of Lie Groups to Differential Equations, GTM 107, Springer-Verlag, Berlin, 1986 | MR
[6] H. R. Lewis, P. G. L. Leach, J. Math. Phys., 23 (1982), 2371 | DOI | MR | Zbl
[7] M. R. Feix, S. Bouquet, H. R. Lewis, Physica D, 28 (1987), 80 | DOI | MR | Zbl
[8] J. Goedert, H. R. Lewis, J. Math. Phys., 28 (1987), 728 | DOI | MR | Zbl
[9] L. G. Pereira, J. Goedert, J. Math. Phys., 33 (1992), 2682 | DOI | MR | Zbl
[10] P. G. L. Leach, H. R. Lewis, W. Sarlet, J. Math. Phys., 25 (1984), 486 | DOI | MR | Zbl
[11] L. D. Landau, E. M. Lifshitz, Mecanique, 3-rd ed., Mir, Moscou, 1969 | MR
[12] H. Giacomini, J. Phys. A: Math. Gen, 23 (1990), 587 | DOI | MR
[13] H. Giacomini, J. Phys. A: Math. Gen., 23 (1990), 865 | DOI | MR
[14] A. Dewisme, S. Bouquet, J. Math. Phys., 34 (1993), 997 | DOI | MR | Zbl
[15] S. Bouquet, A. Dewisme, Nonlinear Evolution Equations and Dynamical Systems, World Scientific, Singapore, 1992 | MR | Zbl
[16] J. Martin, S. Bouquet, J. Math. Phys., 35:1 (1994), 181–189 | DOI | MR | Zbl
[17] G. Murphy, Ordinary Differential Equation and Their Solutions, D. Van Nostrand Company, New York, 1960 | MR | Zbl
[18] S. Bouquet, H. R. Lewis, J. Math. Phys., 37:11 (1996), 5496–5517 | DOI | MR
[19] M. R. Feix, private communication, 1992
[20] V. P. Ermakov, Univ. Izv. Kiev{, sér. 3}, 1980, no. 9, 1