Completely integrable one-dimensional classical and relativistic time-dependent hamiltonians
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 355-363

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we look for first integrals $I(q;p;t)$ of time-dependent one-dimensional Hamiltonians $H(q;p;t)$. We first present a formalism based on the use of canonical transformations, and it is seen that $I(q;p;t)$ can always be written in terms of two variables $I=P(u;v)$, whereu andv are functions of $q$, $p$ andt, without loss of generality. Moreover, it is shown that any Hamiltonian with first integral $I(q;p;t)$ can be made autonomous in the space $(u,v,T)$, where $T$ is a new time. On the other hand, the cases of a particle moving classically and relativistically in a time-dependent potential $V(q;t)$ are studied. In both cases, completely integrable potentials, together with the corresponding first integrals, are derived.
@article{TMF_1994_99_3_a0,
     author = {S. Bouquet},
     title = {Completely integrable one-dimensional classical and relativistic time-dependent hamiltonians},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {355--363},
     publisher = {mathdoc},
     volume = {99},
     number = {3},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a0/}
}
TY  - JOUR
AU  - S. Bouquet
TI  - Completely integrable one-dimensional classical and relativistic time-dependent hamiltonians
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 355
EP  - 363
VL  - 99
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a0/
LA  - ru
ID  - TMF_1994_99_3_a0
ER  - 
%0 Journal Article
%A S. Bouquet
%T Completely integrable one-dimensional classical and relativistic time-dependent hamiltonians
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 355-363
%V 99
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a0/
%G ru
%F TMF_1994_99_3_a0
S. Bouquet. Completely integrable one-dimensional classical and relativistic time-dependent hamiltonians. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 3, pp. 355-363. http://geodesic.mathdoc.fr/item/TMF_1994_99_3_a0/