Deformations of Calogero–Moser systems and finite Toda chains
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 234-240 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Recent results pertaining to the complete integrability of some novel $n$-particle models in dimension one are presented. These models generalize the Calogero–Moser systems related to classical root systems. Generalizations of the relativistic Toda chain are obtained via limit transitions.
@article{TMF_1994_99_2_a8,
     author = {J. F. van Diejen},
     title = {Deformations of {Calogero{\textendash}Moser} systems and finite {Toda} chains},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {234--240},
     year = {1994},
     volume = {99},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a8/}
}
TY  - JOUR
AU  - J. F. van Diejen
TI  - Deformations of Calogero–Moser systems and finite Toda chains
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 234
EP  - 240
VL  - 99
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a8/
LA  - en
ID  - TMF_1994_99_2_a8
ER  - 
%0 Journal Article
%A J. F. van Diejen
%T Deformations of Calogero–Moser systems and finite Toda chains
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 234-240
%V 99
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a8/
%G en
%F TMF_1994_99_2_a8
J. F. van Diejen. Deformations of Calogero–Moser systems and finite Toda chains. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 234-240. http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a8/

[1] A. M. Perelomov, Integrable systems of classical mechanics and Lie algebras, vol. I, Birkäuser, Basel, 1990 | MR | Zbl

[2] E. T. Whittaker, G. N. Watson, A course of modern analysis, Cambridge U.P., Cambridge, 1986 | MR

[3] S. N. M. Ruijsenaars, H. Schneider, “A new class of integrable systems and its relation to solitons”, Ann. Phys. (N.Y.), 170 (1986), 370 | DOI | MR | Zbl

[4] S. N. M. Ruijsenaars, “Complete integrability of relativistic Calogero-Moser systems and elliptic function identities”, Commun. Math. Phys., 110 (1987), 191 | DOI | MR | Zbl

[5] S. N. M. Ruijsenaars, “Finite-dimensional soliton systems”, Integrable and superintegrable systems, ed. B. Kupershmidt, World Scientific, Singapore, 1990, 165 | DOI | MR

[6] M. Toda, Theory of nonlinear lattices, 2-nd Edition, Springer-Verlag, Berlin, 1989 | MR | Zbl

[7] S. N. M. Ruijsenaars, “Relativistic Toda systems”, Commun. Math. Phys., 133 (1990), 217 | DOI | MR | Zbl

[8] V. I. Inozemtsev, “The finite Toda lattices”, Commun. Math. Phys., 121 (1989), 629 | DOI | MR | Zbl

[9] J. F. van Diejen, Commuting difference operators with polynomial eigenfunctions, math. prepr. University of Amsterdam No 93-10, 1993

[10] J. F. van Diejen, Integrability of difference Calogero-Moser systems, math. prepr. University of Amsterdam No 93-19, 1993 | MR

[11] J. F. van Diejen, “Difference Calogero-Moser systems and finite Toda chains”, J. Math. Phys., 36:3 (1995), 1299–1323 | DOI | MR | Zbl

[12] V. I. Inozemtsev, “Lax representation with spectral parameter on a torus for integrable particle systems”, Lett. Math. Phys., 17 (1989), 11 | DOI | MR | Zbl

[13] Y. B. Suris, “Discrete time generalized Toda lattices: complete integrability and relation with relativistic Toda lattices”, Phys. Lett. A, 145 (1990), 113 | DOI | MR