@article{TMF_1994_99_2_a8,
author = {J. F. van Diejen},
title = {Deformations of {Calogero{\textendash}Moser} systems and finite {Toda} chains},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {234--240},
year = {1994},
volume = {99},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a8/}
}
J. F. van Diejen. Deformations of Calogero–Moser systems and finite Toda chains. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 234-240. http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a8/
[1] A. M. Perelomov, Integrable systems of classical mechanics and Lie algebras, vol. I, Birkäuser, Basel, 1990 | MR | Zbl
[2] E. T. Whittaker, G. N. Watson, A course of modern analysis, Cambridge U.P., Cambridge, 1986 | MR
[3] S. N. M. Ruijsenaars, H. Schneider, “A new class of integrable systems and its relation to solitons”, Ann. Phys. (N.Y.), 170 (1986), 370 | DOI | MR | Zbl
[4] S. N. M. Ruijsenaars, “Complete integrability of relativistic Calogero-Moser systems and elliptic function identities”, Commun. Math. Phys., 110 (1987), 191 | DOI | MR | Zbl
[5] S. N. M. Ruijsenaars, “Finite-dimensional soliton systems”, Integrable and superintegrable systems, ed. B. Kupershmidt, World Scientific, Singapore, 1990, 165 | DOI | MR
[6] M. Toda, Theory of nonlinear lattices, 2-nd Edition, Springer-Verlag, Berlin, 1989 | MR | Zbl
[7] S. N. M. Ruijsenaars, “Relativistic Toda systems”, Commun. Math. Phys., 133 (1990), 217 | DOI | MR | Zbl
[8] V. I. Inozemtsev, “The finite Toda lattices”, Commun. Math. Phys., 121 (1989), 629 | DOI | MR | Zbl
[9] J. F. van Diejen, Commuting difference operators with polynomial eigenfunctions, math. prepr. University of Amsterdam No 93-10, 1993
[10] J. F. van Diejen, Integrability of difference Calogero-Moser systems, math. prepr. University of Amsterdam No 93-19, 1993 | MR
[11] J. F. van Diejen, “Difference Calogero-Moser systems and finite Toda chains”, J. Math. Phys., 36:3 (1995), 1299–1323 | DOI | MR | Zbl
[12] V. I. Inozemtsev, “Lax representation with spectral parameter on a torus for integrable particle systems”, Lett. Math. Phys., 17 (1989), 11 | DOI | MR | Zbl
[13] Y. B. Suris, “Discrete time generalized Toda lattices: complete integrability and relation with relativistic Toda lattices”, Phys. Lett. A, 145 (1990), 113 | DOI | MR