Exact solutions to the partially integrable Eckhaus equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 226-233

Voir la notice de l'article provenant de la source Math-Net.Ru

A partially integrable extension of the Eckhaus equation is first converted to one real fourth order equation. The only integrable case is isolated by simply solving a diophantine equation, and its linearizing transformation, not obvious at first glance, is shown to be the singular part transformation of Painlevé analysis. In the partially integrable case, three exact solutions are found by the truncation procedure. The third one is a six-parameter solution, whose dependence on $x$ is elliptic and dependence on $t$ involves the equation of Chazy.
@article{TMF_1994_99_2_a7,
     author = {R. Conte and M. Musette},
     title = {Exact solutions to the partially integrable {Eckhaus} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {226--233},
     publisher = {mathdoc},
     volume = {99},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a7/}
}
TY  - JOUR
AU  - R. Conte
AU  - M. Musette
TI  - Exact solutions to the partially integrable Eckhaus equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 226
EP  - 233
VL  - 99
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a7/
LA  - en
ID  - TMF_1994_99_2_a7
ER  - 
%0 Journal Article
%A R. Conte
%A M. Musette
%T Exact solutions to the partially integrable Eckhaus equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 226-233
%V 99
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a7/
%G en
%F TMF_1994_99_2_a7
R. Conte; M. Musette. Exact solutions to the partially integrable Eckhaus equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 226-233. http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a7/