Exact solutions to the partially integrable Eckhaus equation
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 226-233
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A partially integrable extension of the Eckhaus equation is first converted to one real fourth order equation. The only integrable case is isolated by simply solving a diophantine equation, and its linearizing transformation, not obvious at first glance, is shown to be the singular part transformation of Painlevé analysis. In the partially integrable case, three exact solutions are found by the truncation procedure. The third one is a six-parameter solution, whose dependence on $x$ is elliptic and dependence on $t$ involves the equation of Chazy.
			
            
            
            
          
        
      @article{TMF_1994_99_2_a7,
     author = {R. Conte and M. Musette},
     title = {Exact solutions to the partially integrable {Eckhaus} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {226--233},
     publisher = {mathdoc},
     volume = {99},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a7/}
}
                      
                      
                    R. Conte; M. Musette. Exact solutions to the partially integrable Eckhaus equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 226-233. http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a7/
