@article{TMF_1994_99_2_a7,
author = {R. Conte and M. Musette},
title = {Exact solutions to the partially integrable {Eckhaus} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {226--233},
year = {1994},
volume = {99},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a7/}
}
R. Conte; M. Musette. Exact solutions to the partially integrable Eckhaus equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 226-233. http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a7/
[1] F. J. Bureau, “Integration of some nonlinear systems of ordinary differential equations”, Ann. Mat. Pura Appl. (4), 94 (1972), 345–359 | DOI | MR | Zbl
[2] F. J. Bureau, “Sur des systèmes différentiels du troisième ordre et les équations différentielles associées”, Acad. Roy. Belg. Bull. Cl. Sci. (5), 73:6–9 (1987), 335–353 | MR | Zbl
[3] F. Calogero, W. Eckhaus, “Nonlinear evolution equations, rescalings, model PDEs and their integrability. I”, Inverse problems, 3 (1987), 229–262 | DOI | MR | Zbl
[4] F. Calogero, S. de Lillo, “The Eckhaus PDE $i\psi_t + \psi_{xx} + 2(\vert\psi\vert^2)_x\psi + \vert\psi\vert^4\psi = 0$”, Inverse Problems, 4:2 (1988), 571 | DOI | MR | Zbl
[5] J. Chazy, “Sur les équations différentielles du troisième ordre et d'ordre supérieur dont I'intégrale générale a ses points critiques fixes”, Acta Math., 34:1 (1911), 317–385 | DOI | MR | Zbl
[6] P. A. Clarkson, “Dimensional reductions and exact solutions of a generalized nonlinear Schrödinger equation”, Nonlinearity, 5 (1992), 453–472 | DOI | MR | Zbl
[7] P. A. Clarkson, C. M. Cosgrove, “The Painlevé property and a generalised derivative nonlinear Schrödinger equation”, J. Phys. A, 20 (1987), 2003–2024 | DOI | MR | Zbl
[8] R. Conte, “Invariant Painlevé analysis of partial differential equations”, Phys. Lett. A, 140 (1989), 383–390 | DOI | MR
[9] R. Conte, “Unification of PDE and ODE versions of Painlevé analysis into a single invariant version”, Painleve transcendents, their asymptotics and physical applications, eds. D. Levi, P. Winternitz, Plenum, New York, 1992, 125–144 | DOI | MR | Zbl
[10] R. Conte, A. P. Fordy, A. Pickering, “A perturbative Painleve approach to nonlinear differential equations”, Physica D, 69 (1993), 33–58 | DOI | MR | Zbl
[11] R. Conte, M. Musette, “Linearity inside nonlinearity: exact solutions to the complex Ginzburg–Landau equation”, Physica D, 69 (1993), 1–17 | DOI | MR | Zbl
[12] M. Florjańczyk, L. Gagnon, “Exact solutions for a higher-order nonlinear Schrödinger equation”, Phys. Rev. A, 41 (1990), 4478–4485 | DOI
[13] M. Florjańczyk, L. Gagnon, “Dispersive-type solutions for the Eckhaus equation”, Phys. Rev. A, 45 (1992), 6881–6883 | DOI
[14] G.-H. Halphen, “Sur la réduction d'equations différentielles linéaires aux formes intégrables”, Ocuvres, tome 3, Gauthier-Villars, Paris, 1921, 1–260
[15] A. Kundu, “Landau–Lifshitz and higher order nonlinear systems gauge generated from nonlinear Schrödinger type equations”, J. Math. Phys., 25 (1984), 3433–3438 | DOI | MR
[16] M. Musette, “Nonlinear partial differential equations”, An introduction to methods of complex analysis and geometry for classical mechanics and nonlinear waves, eds. D. Benest, C. Froeschlé, Éditions Frontiéres, Gif-sur-Yvette, 1994, 145–195 | MR | Zbl
[17] P. Painlevé, “Sur les équations différentielles du second ordre et d'ordre supérieur dont I'intégrale générale est uniforme”, Acta Math., 25 (1902), 1–85 | DOI | MR
[18] A. Pickering, “A new truncation in Painlevé analysis”, J. Phys. A, 26 (1993), 4395–4405 | DOI | MR | Zbl
[19] J. Weiss, M. Tabor, G. Carnevale, “The Painlevé property for partial differential equations”, J. Math. Phys., 24 (1983), 522–526 | DOI | MR | Zbl