Exact solutions to the partially integrable Eckhaus equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 226-233 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A partially integrable extension of the Eckhaus equation is first converted to one real fourth order equation. The only integrable case is isolated by simply solving a diophantine equation, and its linearizing transformation, not obvious at first glance, is shown to be the singular part transformation of Painlevé analysis. In the partially integrable case, three exact solutions are found by the truncation procedure. The third one is a six-parameter solution, whose dependence on $x$ is elliptic and dependence on $t$ involves the equation of Chazy.
@article{TMF_1994_99_2_a7,
     author = {R. Conte and M. Musette},
     title = {Exact solutions to the partially integrable {Eckhaus} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {226--233},
     year = {1994},
     volume = {99},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a7/}
}
TY  - JOUR
AU  - R. Conte
AU  - M. Musette
TI  - Exact solutions to the partially integrable Eckhaus equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 226
EP  - 233
VL  - 99
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a7/
LA  - en
ID  - TMF_1994_99_2_a7
ER  - 
%0 Journal Article
%A R. Conte
%A M. Musette
%T Exact solutions to the partially integrable Eckhaus equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 226-233
%V 99
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a7/
%G en
%F TMF_1994_99_2_a7
R. Conte; M. Musette. Exact solutions to the partially integrable Eckhaus equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 226-233. http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a7/

[1] F. J. Bureau, “Integration of some nonlinear systems of ordinary differential equations”, Ann. Mat. Pura Appl. (4), 94 (1972), 345–359 | DOI | MR | Zbl

[2] F. J. Bureau, “Sur des systèmes différentiels du troisième ordre et les équations différentielles associées”, Acad. Roy. Belg. Bull. Cl. Sci. (5), 73:6–9 (1987), 335–353 | MR | Zbl

[3] F. Calogero, W. Eckhaus, “Nonlinear evolution equations, rescalings, model PDEs and their integrability. I”, Inverse problems, 3 (1987), 229–262 | DOI | MR | Zbl

[4] F. Calogero, S. de Lillo, “The Eckhaus PDE $i\psi_t + \psi_{xx} + 2(\vert\psi\vert^2)_x\psi + \vert\psi\vert^4\psi = 0$”, Inverse Problems, 4:2 (1988), 571 | DOI | MR | Zbl

[5] J. Chazy, “Sur les équations différentielles du troisième ordre et d'ordre supérieur dont I'intégrale générale a ses points critiques fixes”, Acta Math., 34:1 (1911), 317–385 | DOI | MR | Zbl

[6] P. A. Clarkson, “Dimensional reductions and exact solutions of a generalized nonlinear Schrödinger equation”, Nonlinearity, 5 (1992), 453–472 | DOI | MR | Zbl

[7] P. A. Clarkson, C. M. Cosgrove, “The Painlevé property and a generalised derivative nonlinear Schrödinger equation”, J. Phys. A, 20 (1987), 2003–2024 | DOI | MR | Zbl

[8] R. Conte, “Invariant Painlevé analysis of partial differential equations”, Phys. Lett. A, 140 (1989), 383–390 | DOI | MR

[9] R. Conte, “Unification of PDE and ODE versions of Painlevé analysis into a single invariant version”, Painleve transcendents, their asymptotics and physical applications, eds. D. Levi, P. Winternitz, Plenum, New York, 1992, 125–144 | DOI | MR | Zbl

[10] R. Conte, A. P. Fordy, A. Pickering, “A perturbative Painleve approach to nonlinear differential equations”, Physica D, 69 (1993), 33–58 | DOI | MR | Zbl

[11] R. Conte, M. Musette, “Linearity inside nonlinearity: exact solutions to the complex Ginzburg–Landau equation”, Physica D, 69 (1993), 1–17 | DOI | MR | Zbl

[12] M. Florjańczyk, L. Gagnon, “Exact solutions for a higher-order nonlinear Schrödinger equation”, Phys. Rev. A, 41 (1990), 4478–4485 | DOI

[13] M. Florjańczyk, L. Gagnon, “Dispersive-type solutions for the Eckhaus equation”, Phys. Rev. A, 45 (1992), 6881–6883 | DOI

[14] G.-H. Halphen, “Sur la réduction d'equations différentielles linéaires aux formes intégrables”, Ocuvres, tome 3, Gauthier-Villars, Paris, 1921, 1–260

[15] A. Kundu, “Landau–Lifshitz and higher order nonlinear systems gauge generated from nonlinear Schrödinger type equations”, J. Math. Phys., 25 (1984), 3433–3438 | DOI | MR

[16] M. Musette, “Nonlinear partial differential equations”, An introduction to methods of complex analysis and geometry for classical mechanics and nonlinear waves, eds. D. Benest, C. Froeschlé, Éditions Frontiéres, Gif-sur-Yvette, 1994, 145–195 | MR | Zbl

[17] P. Painlevé, “Sur les équations différentielles du second ordre et d'ordre supérieur dont I'intégrale générale est uniforme”, Acta Math., 25 (1902), 1–85 | DOI | MR

[18] A. Pickering, “A new truncation in Painlevé analysis”, J. Phys. A, 26 (1993), 4395–4405 | DOI | MR | Zbl

[19] J. Weiss, M. Tabor, G. Carnevale, “The Painlevé property for partial differential equations”, J. Math. Phys., 24 (1983), 522–526 | DOI | MR | Zbl