The nonlinear diffusion–convection equation on the semiline with time-dependent flux at the origin
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 211-219
Cet article a éte moissonné depuis la source Math-Net.Ru
The nonlinear diffusion–convection equation is considered as a pheno-menological model of two-phase flow in a semi-infinite porous medium. For such model the initial/boundary value problem is solved with a general initial datum and a boundary condition at the origin representing a time-dependent flux. The problem is reduced to a linear integral equation of Volterra type in one dependent variable; in some cases of applicative interest this eqution can be solved by quadratures.
@article{TMF_1994_99_2_a5,
author = {F. Calogero and S. De Lillo},
title = {The nonlinear diffusion{\textendash}convection equation on the semiline with time-dependent flux at the origin},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {211--219},
year = {1994},
volume = {99},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a5/}
}
TY - JOUR AU - F. Calogero AU - S. De Lillo TI - The nonlinear diffusion–convection equation on the semiline with time-dependent flux at the origin JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1994 SP - 211 EP - 219 VL - 99 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a5/ LA - en ID - TMF_1994_99_2_a5 ER -
%0 Journal Article %A F. Calogero %A S. De Lillo %T The nonlinear diffusion–convection equation on the semiline with time-dependent flux at the origin %J Teoretičeskaâ i matematičeskaâ fizika %D 1994 %P 211-219 %V 99 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a5/ %G en %F TMF_1994_99_2_a5
F. Calogero; S. De Lillo. The nonlinear diffusion–convection equation on the semiline with time-dependent flux at the origin. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 211-219. http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a5/
[1] G. Rosen, Phys. Rev. Lett., 49 (1982), 1844 | DOI | MR
[2] A. S. Focas, Y. C. Yortsos, SIAM J. Appl. Math., 42 (1982), 318 | DOI | MR
[3] M. J. King, J. Math. Phys., 26 (1985), 870 | DOI | MR | Zbl
[4] P. Broadbridge, C. Rogers, J. Engin. Math., 24 (1990), 25 | DOI | MR | Zbl
[5] F. Calogero, S. De Lillo, J. Math. Phys., 32 (1991), 99 | DOI | MR | Zbl
[6] F. Calogero, S. De Lillo, Nonlinearity, 2 (1989), 37 | DOI | MR | Zbl