N-soliton-type solutions of the self-dual Yang-Mills equations in $M^4$
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 201-210

Voir la notice de l'article provenant de la source Math-Net.Ru

We have investigated by computer in the case $N=2$ the dynamics of an $N$-soliton type ($N$-monopole-type) solution of the self-dual Yang–Mills equations in Minkowski space-time $M^4$ found previously. Even for $N=2$ this solution involves choices of up to 18 parameters. For “head-on” collisions an exotic dynamics already develops, involving disappearance of the monopoles, their exchange, and/or the appearance of additional features, spheres and discs.
@article{TMF_1994_99_2_a4,
     author = {R. K. Bullough and B. S. Getmanov and P. M. Sutcliffe},
     title = {N-soliton-type solutions of the self-dual {Yang-Mills} equations in $M^4$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {201--210},
     publisher = {mathdoc},
     volume = {99},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a4/}
}
TY  - JOUR
AU  - R. K. Bullough
AU  - B. S. Getmanov
AU  - P. M. Sutcliffe
TI  - N-soliton-type solutions of the self-dual Yang-Mills equations in $M^4$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 201
EP  - 210
VL  - 99
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a4/
LA  - en
ID  - TMF_1994_99_2_a4
ER  - 
%0 Journal Article
%A R. K. Bullough
%A B. S. Getmanov
%A P. M. Sutcliffe
%T N-soliton-type solutions of the self-dual Yang-Mills equations in $M^4$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 201-210
%V 99
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a4/
%G en
%F TMF_1994_99_2_a4
R. K. Bullough; B. S. Getmanov; P. M. Sutcliffe. N-soliton-type solutions of the self-dual Yang-Mills equations in $M^4$. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 201-210. http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a4/