N-soliton-type solutions of the self-dual Yang-Mills equations in $M^4$
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 201-210 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We have investigated by computer in the case $N=2$ the dynamics of an $N$-soliton type ($N$-monopole-type) solution of the self-dual Yang–Mills equations in Minkowski space-time $M^4$ found previously. Even for $N=2$ this solution involves choices of up to 18 parameters. For “head-on” collisions an exotic dynamics already develops, involving disappearance of the monopoles, their exchange, and/or the appearance of additional features, spheres and discs.
@article{TMF_1994_99_2_a4,
     author = {R. K. Bullough and B. S. Getmanov and P. M. Sutcliffe},
     title = {N-soliton-type solutions of the self-dual {Yang-Mills} equations in $M^4$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {201--210},
     year = {1994},
     volume = {99},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a4/}
}
TY  - JOUR
AU  - R. K. Bullough
AU  - B. S. Getmanov
AU  - P. M. Sutcliffe
TI  - N-soliton-type solutions of the self-dual Yang-Mills equations in $M^4$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 201
EP  - 210
VL  - 99
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a4/
LA  - en
ID  - TMF_1994_99_2_a4
ER  - 
%0 Journal Article
%A R. K. Bullough
%A B. S. Getmanov
%A P. M. Sutcliffe
%T N-soliton-type solutions of the self-dual Yang-Mills equations in $M^4$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 201-210
%V 99
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a4/
%G en
%F TMF_1994_99_2_a4
R. K. Bullough; B. S. Getmanov; P. M. Sutcliffe. N-soliton-type solutions of the self-dual Yang-Mills equations in $M^4$. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 201-210. http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a4/

[1] N. Zabusky, M. D. Kruskal, Phys. Rev. Lett., 15 (1965), 240 | DOI | Zbl

[2] R. K. Dodd, R. K. Bullough, Proc. R. Soc. Lond. A, 351 (1976), 499 | DOI | MR | Zbl

[3] R. K. Bullough, P. J. Caudrey(eds.), Solitons, Springer-Verlag, 1980 | MR | Zbl

[4] M. Atiyah, N. Hitchin, The geometry and dynamics of magnetic monopoles, M. B. Porter Lectures, Rice University, 1988 | MR

[5] B. S. Getmanov, Phys. Lett. B, 224 (1990), 455 | DOI | MR

[6] B. S. Getmanov, P. M. Sutcliff, Heriott-Watt, preprint HWUP 93/15, 1993

[7] T,T. Wu, C. N. Yang, Phys. Rev. D, 13 (1978), 3233 | MR

[8] A. A. Belavin, V. E. Zakharov, Phys. Lett. B, 73 (1978), 53 | DOI | MR

[9] I. V. Barashenkov, B. S. Getmanov, Commun. Math. Phys., 112 (1987), 423 | DOI | MR

[10] I. V. Barashenkov, B. S. Getmanov, V. E. Kovtun, Jorn.of Math. Phys., 34 (1993), 3039 | DOI | MR | Zbl

[11] I. V. Barashenkov, B. S. Getmanov, Jorn. of Math. Phys., 34 (1993), 3054 | DOI | MR | Zbl

[12] G.'t Hooft, Phys. Rev. D, 14 (1976), 3432 | DOI

[13] M. K. Prasad, Physica D, 1 (1980), 167 | DOI | MR

[14] J. P. Hsu, E. Mac, J. Math. Phys., 18 (1977), 100 | DOI | MR

[15] E. F. Corrigan, D. V. Fairlie, Phys. Lett. B, 67 (1977), 69 | DOI | MR

[16] G.'t Hooft, unpublished

[17] F. Wilczek, Quark confinement and field theory, John Wiley, New York, 1977