N-soliton-type solutions of the self-dual Yang-Mills equations in $M^4$
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 201-210
Voir la notice de l'article provenant de la source Math-Net.Ru
We have investigated by computer in the case $N=2$ the dynamics of an $N$-soliton type ($N$-monopole-type) solution of the self-dual Yang–Mills equations in Minkowski space-time $M^4$ found previously. Even for $N=2$ this solution involves choices of up to 18 parameters. For “head-on” collisions an exotic dynamics already develops, involving disappearance of the monopoles, their exchange, and/or the appearance of additional features, spheres and discs.
@article{TMF_1994_99_2_a4,
author = {R. K. Bullough and B. S. Getmanov and P. M. Sutcliffe},
title = {N-soliton-type solutions of the self-dual {Yang-Mills} equations in $M^4$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {201--210},
publisher = {mathdoc},
volume = {99},
number = {2},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a4/}
}
TY - JOUR AU - R. K. Bullough AU - B. S. Getmanov AU - P. M. Sutcliffe TI - N-soliton-type solutions of the self-dual Yang-Mills equations in $M^4$ JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1994 SP - 201 EP - 210 VL - 99 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a4/ LA - en ID - TMF_1994_99_2_a4 ER -
%0 Journal Article %A R. K. Bullough %A B. S. Getmanov %A P. M. Sutcliffe %T N-soliton-type solutions of the self-dual Yang-Mills equations in $M^4$ %J Teoretičeskaâ i matematičeskaâ fizika %D 1994 %P 201-210 %V 99 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a4/ %G en %F TMF_1994_99_2_a4
R. K. Bullough; B. S. Getmanov; P. M. Sutcliffe. N-soliton-type solutions of the self-dual Yang-Mills equations in $M^4$. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 201-210. http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a4/