Solvability of the derivative nonlinear Schrödinger equation and the massive Thirring model
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 322-328 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Here we review some results of J. -H. Lee of the $N\times N$ Zakharov–Shabat system with a polynomial spectral parameter. We define a scattering transform following the set-up of Beals–Coifman [2]. In the $2 \times 2$ cases, we modify the Kaup–Newell and Kuznetsov–Mikhailov system to assure the normalization with respect to the spectral parameter. Then we are able to apply the technique of Zakharov–Shabat for the solitons of NLS to our cases. We obtain the long-time behavior of the equations which can be transformed into DNLS and MTM in laboratory coordinates respectively.
@article{TMF_1994_99_2_a19,
     author = {Jyh-Hao Lee},
     title = {Solvability of the derivative nonlinear {Schr\"odinger} equation and the massive {Thirring} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {322--328},
     year = {1994},
     volume = {99},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a19/}
}
TY  - JOUR
AU  - Jyh-Hao Lee
TI  - Solvability of the derivative nonlinear Schrödinger equation and the massive Thirring model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 322
EP  - 328
VL  - 99
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a19/
LA  - en
ID  - TMF_1994_99_2_a19
ER  - 
%0 Journal Article
%A Jyh-Hao Lee
%T Solvability of the derivative nonlinear Schrödinger equation and the massive Thirring model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 322-328
%V 99
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a19/
%G en
%F TMF_1994_99_2_a19
Jyh-Hao Lee. Solvability of the derivative nonlinear Schrödinger equation and the massive Thirring model. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 322-328. http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a19/

[1] R. Beals, R. R. Coifman, “Scattering, transformation spectrales, et equations devolution nonlineaires”, Goulaouic-Meyer-Schwartz Seminar (1980–1981), École Polytech., Palaiseau, 1981 | MR

[2] R. Beals, R. R. Coifman, “Scattering and inverse scattering for first order system”, Comm. Pure Appl. Math., 37 (1984), 39–90 | DOI | MR | Zbl

[3] R. Beals, R. R. Coifman, “Inverse scattering and evolution equations”, Comm. Pure Appl. Math., 38 (1985), 29–42 | DOI | MR | Zbl

[4] R. Beals, R. R. Coifman, “Scattering and inverse scattering for first-order system. II”, Inverse Problem, 3 (1987), 577–593 | DOI | MR | Zbl

[5] R. Beals, R. R. Coifman, Direct and Inverse Scattering on the line, Math. Surveys and Monographs, 28, AMS, Providence, 1988 | DOI | MR | Zbl

[6] R. Beals, R. R. Coifman, “Linear spectral Problems, non-linear equations and D-BAR-method”, Inverse Problems, 5 (1989), 87–130 | DOI | MR | Zbl

[7] I. V. Barashenkov, B. S. Getmanov, V. E. Kovtun, “The unified approach to integrable relativistic equations: soliton solutions over non-vanishing backgrounds”, Nonlinear Fields: Classical Random Semiclassical, eds. P. Garbaczewski, Z. Popowicz, World Scientific, 1992 | MR

[8] R. K. Bullough, P. J. Caudrey (eds.), “Solitons”, Topics in Current Physics, 117, Springer-Verlag, 1980 | DOI | MR

[9] A. S. Fokas, V. E. Zakharov, Important Developments in Soliton Theory, Springer-Verlag, 1993 | MR | Zbl

[10] A. P. Fordy, “Derivative nonlinear Schrodinger equations and Hermitian symmetric spaces”, J. Phys. A: Math. Gen., 17 (1984), 1235–1245 | DOI | MR | Zbl

[11] V. S. Gerzhikov et al., “Quadratic Bundle and Nonlinear Equations”, Theoret. and Math. Phys., 44:3 (1980), 784–795 | DOI

[12] D. J. Kaup, A. C. Newell, “An exact solution for a derivative nonlinear Schrödinger equation”, J. Math. Phys., 19:4 (1978), 789–801 | DOI | MR

[13] D. J. Kaup, A. C. Newell, “On the Coleman correspondence and the solution of the Massive Thirring Model”, Lettere Al Nuovo Comento, 20:9 (1977), 325–331 | DOI | MR

[14] E. A. Kuznetsov, A. B. Mikhailov, “On the complete integrability of the two-dimensional classical”, Thirring Model. Thet. Math. Physics, 30:3 (1977), 193–200 | DOI | MR

[15] J. H. Lee, Analytic properties of Zakharov–Shabat inverse scattering problem with polynomial spectral dependence of degree 1 in the potential, Ph. D. dissertation, Yale University, may 1983 | MR

[16] J. H. Lee, “A Zakharov–Shabat inverse scattering problem and the associated evolution equations”, Chinese J. of Mathematics, 12:4 (1984), 223–233 | MR

[17] J. H. Lee, “Analytic properties of a Zakharov–Shabat inverse scattering problem. I”, Chinese J. of Mathematics, 14:4 (1986), 225–248 | MR | Zbl

[18] J. H. Lee, “Analytic properties of a Zakharov–Shabat inverse scattering problem. II”, Chinese J. of Mathematics, 16:2 (1987), 81–110 | MR

[19] J. H. Lee, “Global solvability of the derivative nonlinear Schrödinger equation”, Transactions of the Americal Mathematical Society, 314:1 (1989), 107–118 | DOI | MR | Zbl

[20] J. H. Lee, “On the dissipative evolution equations associated with the Zakharov–Shabat system with a quadratic spectral parameter”, Transactions of the AMS, 316:1 (1989), 327–336 | DOI | MR | Zbl

[21] J. H. Lee, “A $N\times N$ Zakharov–Shabat System with a quadratic spectral parameter”, Proc. of the 5-th workshop on nonlinear evolution equations and dynamical systems (Kolymbari, Crete, Greece, July 2–16), Springer-Verlag | MR

[22] J. H. Lee, A $N\times N$ Zakharov–Shabat system with a quadratic spectral parameter and Skew-Hermitian potentials, preprint | MR

[23] J. H. Lee, Inverse scattering transform and D-Bar method, NSC Report, Taipei, 1989–1990

[24] J. H. Lee, Solvability of the massive Thirrng model, preprint

[25] J. H. Lee, “A $N\times N$ Zakharov–Shabat system with a polynomial spectral parameter”, Proc. of 7-th workshop on nonlinear evolution equations and dynamical systems (Gallipolli, Lecce, Italy, june 19–29), 1991 | MR

[26] V. G. Makhankov, Soliton phenomenology, Mathematics and its Applications (Soviet Series), 33, Kuwer Academic Publishers Group, Dordrecht, 1980 | MR

[27] C. T. Lin, Inverse scattering transofrm and the associated evolution equations, Master's thesis, National Taiwan University, may 1992

[28] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer-Verlag, 1991 | MR | Zbl

[29] W. Mio et al., “Modified nonlinear Schrodinge equation for Alfven waves propagating along the magnetic field in cold plasmas”, J. Phys. Soc. Japan., 41 (1976), 265–271 | DOI | MR | Zbl

[30] E. MJøLHUS, “On the modulationalinstability of hydromagnetic waves parallel to the magnetic field”, J. Plasma Physics, 16:3 (1976), 321–334 | DOI

[31] H. C. Morris, R. K. Dodd, “The two component derivative nonlinear Schrödinger equation”, Physica Scripta, 20 (1979), 505–508 | DOI | MR | Zbl

[32] R. Sasaki, “Canonical structure of soliton equations. II. The Kaup-Newell syem”, Physica D, 5, 66–74 | DOI | MR | Zbl

[33] J. C. Shaw, H. C. Yen, “Solving DNLS equation by Riemann problem technique”, Chinese J. of Math., 18 (1990), 283–293 | MR | Zbl

[34] V. E. Zakharov, A. B. Shabat, “A refined theory of two-dimensional self-focussing and one-dimensional self-modulation of waves in non-linear media”, Soviet Physics JETP, 34 (1972), 62–69 | MR

[35] X. Zhou, “Riemann-Hilbert problem and inverse scattering”, SIAM J. Math. Anal., 20 (1989), 966–986 | DOI | MR | Zbl

[36] X. Zhou, “Direct and inverse transform with arbitrary spectral singularities”, Comm. Pure Applied Math., XLII (1989), 895–938 | DOI | MR | Zbl

[37] X. Zhou, Inverse scattering transform for systems with rational spectral dependence, preprint | MR