Solvability of the derivative nonlinear Schr\"odinger equation and the massive Thirring model
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 322-328

Voir la notice de l'article provenant de la source Math-Net.Ru

Here we review some results of J. -H. Lee of the $N\times N$ Zakharov–Shabat system with a polynomial spectral parameter. We define a scattering transform following the set-up of Beals–Coifman [2]. In the $2 \times 2$ cases, we modify the Kaup–Newell and Kuznetsov–Mikhailov system to assure the normalization with respect to the spectral parameter. Then we are able to apply the technique of Zakharov–Shabat for the solitons of NLS to our cases. We obtain the long-time behavior of the equations which can be transformed into DNLS and MTM in laboratory coordinates respectively.
@article{TMF_1994_99_2_a19,
     author = {Jyh-Hao Lee},
     title = {Solvability of the derivative nonlinear {Schr\"odinger} equation and the massive {Thirring} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {322--328},
     publisher = {mathdoc},
     volume = {99},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a19/}
}
TY  - JOUR
AU  - Jyh-Hao Lee
TI  - Solvability of the derivative nonlinear Schr\"odinger equation and the massive Thirring model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 322
EP  - 328
VL  - 99
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a19/
LA  - en
ID  - TMF_1994_99_2_a19
ER  - 
%0 Journal Article
%A Jyh-Hao Lee
%T Solvability of the derivative nonlinear Schr\"odinger equation and the massive Thirring model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 322-328
%V 99
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a19/
%G en
%F TMF_1994_99_2_a19
Jyh-Hao Lee. Solvability of the derivative nonlinear Schr\"odinger equation and the massive Thirring model. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 322-328. http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a19/