@article{TMF_1994_99_2_a19,
author = {Jyh-Hao Lee},
title = {Solvability of the derivative nonlinear {Schr\"odinger} equation and the massive {Thirring} model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {322--328},
year = {1994},
volume = {99},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a19/}
}
TY - JOUR AU - Jyh-Hao Lee TI - Solvability of the derivative nonlinear Schrödinger equation and the massive Thirring model JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1994 SP - 322 EP - 328 VL - 99 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a19/ LA - en ID - TMF_1994_99_2_a19 ER -
Jyh-Hao Lee. Solvability of the derivative nonlinear Schrödinger equation and the massive Thirring model. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 322-328. http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a19/
[1] R. Beals, R. R. Coifman, “Scattering, transformation spectrales, et equations devolution nonlineaires”, Goulaouic-Meyer-Schwartz Seminar (1980–1981), École Polytech., Palaiseau, 1981 | MR
[2] R. Beals, R. R. Coifman, “Scattering and inverse scattering for first order system”, Comm. Pure Appl. Math., 37 (1984), 39–90 | DOI | MR | Zbl
[3] R. Beals, R. R. Coifman, “Inverse scattering and evolution equations”, Comm. Pure Appl. Math., 38 (1985), 29–42 | DOI | MR | Zbl
[4] R. Beals, R. R. Coifman, “Scattering and inverse scattering for first-order system. II”, Inverse Problem, 3 (1987), 577–593 | DOI | MR | Zbl
[5] R. Beals, R. R. Coifman, Direct and Inverse Scattering on the line, Math. Surveys and Monographs, 28, AMS, Providence, 1988 | DOI | MR | Zbl
[6] R. Beals, R. R. Coifman, “Linear spectral Problems, non-linear equations and D-BAR-method”, Inverse Problems, 5 (1989), 87–130 | DOI | MR | Zbl
[7] I. V. Barashenkov, B. S. Getmanov, V. E. Kovtun, “The unified approach to integrable relativistic equations: soliton solutions over non-vanishing backgrounds”, Nonlinear Fields: Classical Random Semiclassical, eds. P. Garbaczewski, Z. Popowicz, World Scientific, 1992 | MR
[8] R. K. Bullough, P. J. Caudrey (eds.), “Solitons”, Topics in Current Physics, 117, Springer-Verlag, 1980 | DOI | MR
[9] A. S. Fokas, V. E. Zakharov, Important Developments in Soliton Theory, Springer-Verlag, 1993 | MR | Zbl
[10] A. P. Fordy, “Derivative nonlinear Schrodinger equations and Hermitian symmetric spaces”, J. Phys. A: Math. Gen., 17 (1984), 1235–1245 | DOI | MR | Zbl
[11] V. S. Gerzhikov et al., “Quadratic Bundle and Nonlinear Equations”, Theoret. and Math. Phys., 44:3 (1980), 784–795 | DOI
[12] D. J. Kaup, A. C. Newell, “An exact solution for a derivative nonlinear Schrödinger equation”, J. Math. Phys., 19:4 (1978), 789–801 | DOI | MR
[13] D. J. Kaup, A. C. Newell, “On the Coleman correspondence and the solution of the Massive Thirring Model”, Lettere Al Nuovo Comento, 20:9 (1977), 325–331 | DOI | MR
[14] E. A. Kuznetsov, A. B. Mikhailov, “On the complete integrability of the two-dimensional classical”, Thirring Model. Thet. Math. Physics, 30:3 (1977), 193–200 | DOI | MR
[15] J. H. Lee, Analytic properties of Zakharov–Shabat inverse scattering problem with polynomial spectral dependence of degree 1 in the potential, Ph. D. dissertation, Yale University, may 1983 | MR
[16] J. H. Lee, “A Zakharov–Shabat inverse scattering problem and the associated evolution equations”, Chinese J. of Mathematics, 12:4 (1984), 223–233 | MR
[17] J. H. Lee, “Analytic properties of a Zakharov–Shabat inverse scattering problem. I”, Chinese J. of Mathematics, 14:4 (1986), 225–248 | MR | Zbl
[18] J. H. Lee, “Analytic properties of a Zakharov–Shabat inverse scattering problem. II”, Chinese J. of Mathematics, 16:2 (1987), 81–110 | MR
[19] J. H. Lee, “Global solvability of the derivative nonlinear Schrödinger equation”, Transactions of the Americal Mathematical Society, 314:1 (1989), 107–118 | DOI | MR | Zbl
[20] J. H. Lee, “On the dissipative evolution equations associated with the Zakharov–Shabat system with a quadratic spectral parameter”, Transactions of the AMS, 316:1 (1989), 327–336 | DOI | MR | Zbl
[21] J. H. Lee, “A $N\times N$ Zakharov–Shabat System with a quadratic spectral parameter”, Proc. of the 5-th workshop on nonlinear evolution equations and dynamical systems (Kolymbari, Crete, Greece, July 2–16), Springer-Verlag | MR
[22] J. H. Lee, A $N\times N$ Zakharov–Shabat system with a quadratic spectral parameter and Skew-Hermitian potentials, preprint | MR
[23] J. H. Lee, Inverse scattering transform and D-Bar method, NSC Report, Taipei, 1989–1990
[24] J. H. Lee, Solvability of the massive Thirrng model, preprint
[25] J. H. Lee, “A $N\times N$ Zakharov–Shabat system with a polynomial spectral parameter”, Proc. of 7-th workshop on nonlinear evolution equations and dynamical systems (Gallipolli, Lecce, Italy, june 19–29), 1991 | MR
[26] V. G. Makhankov, Soliton phenomenology, Mathematics and its Applications (Soviet Series), 33, Kuwer Academic Publishers Group, Dordrecht, 1980 | MR
[27] C. T. Lin, Inverse scattering transofrm and the associated evolution equations, Master's thesis, National Taiwan University, may 1992
[28] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer-Verlag, 1991 | MR | Zbl
[29] W. Mio et al., “Modified nonlinear Schrodinge equation for Alfven waves propagating along the magnetic field in cold plasmas”, J. Phys. Soc. Japan., 41 (1976), 265–271 | DOI | MR | Zbl
[30] E. MJøLHUS, “On the modulationalinstability of hydromagnetic waves parallel to the magnetic field”, J. Plasma Physics, 16:3 (1976), 321–334 | DOI
[31] H. C. Morris, R. K. Dodd, “The two component derivative nonlinear Schrödinger equation”, Physica Scripta, 20 (1979), 505–508 | DOI | MR | Zbl
[32] R. Sasaki, “Canonical structure of soliton equations. II. The Kaup-Newell syem”, Physica D, 5, 66–74 | DOI | MR | Zbl
[33] J. C. Shaw, H. C. Yen, “Solving DNLS equation by Riemann problem technique”, Chinese J. of Math., 18 (1990), 283–293 | MR | Zbl
[34] V. E. Zakharov, A. B. Shabat, “A refined theory of two-dimensional self-focussing and one-dimensional self-modulation of waves in non-linear media”, Soviet Physics JETP, 34 (1972), 62–69 | MR
[35] X. Zhou, “Riemann-Hilbert problem and inverse scattering”, SIAM J. Math. Anal., 20 (1989), 966–986 | DOI | MR | Zbl
[36] X. Zhou, “Direct and inverse transform with arbitrary spectral singularities”, Comm. Pure Applied Math., XLII (1989), 895–938 | DOI | MR | Zbl
[37] X. Zhou, Inverse scattering transform for systems with rational spectral dependence, preprint | MR