Soliton dynamics for near integrable differential-difference equations
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 315-321
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this talk, we consider both the spectral and the direct perturbation methods for studying perturbations an integrable differential-difference equation, the Toda lattice. Both methods employ the formalism of inverse scattering to represent the corrections in terms of an appropriate basis of squared eigenfunctions.
			
            
            
            
          
        
      @article{TMF_1994_99_2_a18,
     author = {Russell L. Herman},
     title = {Soliton dynamics for near integrable differential-difference equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {315--321},
     publisher = {mathdoc},
     volume = {99},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a18/}
}
                      
                      
                    Russell L. Herman. Soliton dynamics for near integrable differential-difference equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 315-321. http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a18/
