Fast decaying potentials on the finite-gap background and the $\bar \partial$-problem on the Riemann surfaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 300-308 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The direct and the inverse ‘scattering problems’ for the heat-conductivity operator $L_P=\partial_y-\partial_x^2+u(x,y)$ are studied for the following class of potentials: $u(x,y)=u_0(x,y)+u_1(x,y)$ where $u_0(x,y)$ is a nonsingular real finite-gap potential and $u_1(x,y)$ decays sufficiently fast as $x^2+y^2 \rightarrow \infty$. We show that the ‘scattering data’ for such potentials is the $\bar \partial$-problem data on the Riemann surface corresponding to the potential $u_0(x,y)$. The ‘scattering data’ corresponding to real potentials is characterized and it is proved that the inverse problem corresponding to such data has unique nonsingular solution without the ‘small norm’ assumption. Analogs of these results for the fixed negative energy scattering problem for the two-dimensional time-independent Schrödinger operator $L_P=-\partial _x^2-\partial _y^2+u(x,y)$ are obtained.
@article{TMF_1994_99_2_a16,
     author = {P. G. Grinevich},
     title = {Fast decaying potentials on the finite-gap background and the $\bar \partial$-problem on the {Riemann} surfaces},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {300--308},
     year = {1994},
     volume = {99},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a16/}
}
TY  - JOUR
AU  - P. G. Grinevich
TI  - Fast decaying potentials on the finite-gap background and the $\bar \partial$-problem on the Riemann surfaces
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 300
EP  - 308
VL  - 99
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a16/
LA  - en
ID  - TMF_1994_99_2_a16
ER  - 
%0 Journal Article
%A P. G. Grinevich
%T Fast decaying potentials on the finite-gap background and the $\bar \partial$-problem on the Riemann surfaces
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 300-308
%V 99
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a16/
%G en
%F TMF_1994_99_2_a16
P. G. Grinevich. Fast decaying potentials on the finite-gap background and the $\bar \partial$-problem on the Riemann surfaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 300-308. http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a16/

[1] Novikov S. P., Veselov A. P., Sovjet Math. Dokl., 30 (1984), 588–591 | Zbl

[2] Manakov S. V., Usp. Mat. Nauk, 31:5 (1976), 245–246 | MR | Zbl

[3] Ablowitz M. J., Jaacov D. Bar, Fokas A. S., Stud. in Appl. Math., 69:2 (1983), 135–143 | DOI | MR | Zbl

[4] Beals R., Coifman R. R., “Multidimensional inverse scatterings and nonlinear partial differential equations”, Pseudodifferential operators and applications (Notre Dame, Ind., 1984), Proc. Sympos. Pure Math., 43, Amer. Math. Soc., Providence, RI, 1985, 45–70 | DOI | MR

[5] Grinevich P. G., Novikov R. G., Functional Anal. Appl., 19:4 (1985), 276–285 | DOI | MR | Zbl

[6] Grinevich P. G., Manakov S. V., Functional Anal. Appl., 20:2 (1986), 94–103 | DOI | MR | Zbl

[7] Grinevich P. G., Novikov S. P., Functional Anal. Appl., 22:1 (1988), 19–27 | DOI | MR | Zbl

[8] Krichever I. M., Sov. Math. Dokl., 17 (1976), 394–397 | Zbl

[9] Krichever I. M., Russian Math. Surveys, 44:2 (1989), 145–225 | DOI | MR | Zbl

[10] Dubrovin B. A., Krichever I. M., Novikov S. P., Sov. Math. Dokl., 17 (1976), 947–951 | Zbl

[11] Natanzon S. M., Functional. Anal. Appl., 22:1 (1988), 68–70 ; Functional Anal. Appl., 26:1 (1992), 13–20 | DOI | MR | Zbl | DOI | MR | Zbl

[12] Kuznetsov E. A., Mikhailov A. V., Sovjet. Phys. JETP, 40:5 (1974), 855–859 | MR

[13] Krichever I. M., Funkcional. Anal. i Prilozhen., 9:2 (1975), 77–78 | MR | Zbl

[14] Bikbaev R. F., Sharipov R. A., Theor. Math. Phys., 78:3 (1989), 244–252 | DOI | MR | Zbl

[15] Rodin Yu. L., Physica D, 24 (1987), 1–3, 1–53 | DOI | MR

[16] Grinevich P. G., Functional Anal. Appl., 23:4 (1989), 79–80 | MR | Zbl

[17] Sovjet. Math., 5:3 (1976), 334–396 (Russion) | DOI | MR | MR | Zbl | Zbl